当前位置:首页 » 新型汽车 » 电动汽车便携式直流充电机电路图

电动汽车便携式直流充电机电路图

发布时间: 2023-05-22 20:01:46

Ⅰ 48v 电动车充电器电路图

高压不工作无非是以下几个原因:

1、3842不良或其外围电路有元件损坏。

2、光耦不良或损坏。

3、TL431不良或损坏。

4、8N60场效应管不良或损坏。

(1)电动汽车便携式直流充电机电路图扩展阅读

性能判断

如48V充电器,最高电压不大于59.6V,大于此电压,充电可能不转灯,低电压不低于55V,低于此电压造成充电不足,长时间容易对电池亏电,电流,如48V20A充电器,最大电流不大于3A。大于3A可能造成电池失水较早,最低不低于2.1A。低压此电流造成充电不足。

注意事项:

1、48V新电池要求充电器参数,最高电压58.5---59.7,不低于58V,低于58V造成充电不足,高 于59.7V可能造成充电不转灯。转灯电流约0.4---0.7A,实际电压约55.5V,低于50V造成充电不足,长时间充电电池亏电。

2、4820电池要求充电最大电流2.4----3.3A,低于2.2A充电慢,充电效果差。

3、市场上低于30元的充电器实际功率小,参数设计不精确,请注意区分。

4、充电器稳压电路失效会造成输出电压75---130V,充电电池滚烫不转灯。

5、当新电池出现,续航里程20A电池低于30公里 12A电池低于25公里请检查充电器各项参数,如果无法判断是,请更换优质充电器再次使用,即可解决问题。

6、新电池遇到不转灯时,请更换另外一个优质充电器试机。

7、正常情况下。4820新电池充电时间约10小时左右,续航里程40---60公里,4812新电池充电时间约10小时内,里程达到25---40公里,如果正常充电时间超过以上,请更换优质充电器再 次使用,反馈信息。

8、有很多充电器内部电路、输入输出连线老化,造成,有时候能充、有时候不能冲。严重影响电池,或者充电过程中电路失效,造成充鼓包,如果出现这种情况,请直接更换优质电器再次使用。

Ⅱ 求图片:电动车CQ4812A充电器电路图。O(∩_∩)O谢谢!

供冲罩凯行参散孙闹考

Ⅲ 电动车充电器电路图

爱玛SP120—48V充电器电路图

Ⅳ 谁有电动汽车充电桩的电路原理图啊,求参考!毕不了业了!

天津圣威为您解答:

一体式直流充电系统主要包括:直流充电模块和桩控两大部分,两者具有数据信息交换、前者为主后者为辅的控制关系,且都有主电路、控制电路组成。

直流充电模块主电路采用整流、高频逆变、整流、滤波方式实现动力电转高压直流,一次主电路控制方式由输入断路器、接触器和充电接口连接器实现各个器件关断和启动功能;二次主电路主要采用升降压方式与一次侧形成隔离,对电路起到防干扰、隔直流和隔交流作用。

直流充电模块控制电路包括:强制控制由“启停”控制、“急停”控制组成;软启动控制由运行监控控制、充电桩智能控制器、读卡器和人机交互界面组成,其中液晶人机交互界面与IC卡读卡器统称为用户终端设备(UT)。

主电路输入断路器具备过载、短路和漏电保护功能;输出接触器控制电源的通断;连接器提供与电动汽车连接的充电接口,具备锁紧装置和防误操作功能。二次电路提供“启停”控制与“急停”操作;信号灯提供“待机”、“充电“与“充满”状态指示;三相智能电能表进行充电过程中全部电量计量;用户终端则提供刷卡计费、充电方式设置与启停控制操作。


Ⅳ 电动车充电器原理和图纸

电池充电通常要完成两个任务,首先是尽可能快地使电池恢复额定容量,另一是使用小电流充电,补充电池因自放电而损失的能量,以维持电池的额定容量。在充电过程中,铅酸电池负极板上的硫酸铅逐渐析出铅,正极板上的硫酸铅逐渐生成二氧化铅。当正负极板上的硫酸铅完全生成铅和二氧化铅后,电池开始发生过充电反应,产生氢气和氧气。这样,在非密封电池中,电解液中的水将逐渐减少。在密封铅酸蓄电池中,采用中等充电速率时,氢气和氧气能够重新化合为水。过充电开始的时间与充电的速率有关。当充电速率大于C/5时,电池容量恢复到额定容量的80%以前,即开始发生过充电反应。只有充电速率小于C/100,才能使电池在容量恢复到100%后,出现过充电反应。为了使电池容量恢复到100%,必须允许一定的过充电反应。过充电反应发生后,单格电池的电压迅速上升,达到一定数值后,上升速率减小,然后电池电压开始缓慢下降。由此可知,电池充足电后,维持电容容量的最佳方法就是在电池组两端加入恒定的电压。浮充电压下,充入的电流应能补充电池因自放电而失去的能量。浮充电压不能过高,以免因严重的过充电而缩短电池寿命。采用适当的浮充电压,密封铅酸蓄电池的寿命可达10年以上。实践证明,实际的浮充电压与规定的浮充电压相差5%时,免维护蓄电池的寿命将缩短一半。铅酸电池的电压具有负温度系数,其单格值为-4mV/℃。在环境温度为25℃时工作很理想的普通(无温度补偿)充电器,当环境温度降到0℃时,电池就不能充足电,当环境温度上升到50℃时,电池将因严重的过充电而缩短寿命。因此,为了保证在很宽的温度范围内,都能使电池刚好充足电,充电器的各种转换电压必须随电池电压的温度系数而变。

常见的几种充电模式为:

1. 限流恒压充电模式,其充电曲线和转换电压如图1所示。

2. 两阶段恒流充电模式,其充电曲线和转换电压如图2所示。

3. 恒流脉冲充电模式,其充电曲线和转换电压如图3所示。

此三种充电模式均为业界推荐采用,其各阶段充电电流间的转换,都分别受有温度补偿的转换电压Vmin(快充最低允许电压)、Vbik(快充终止电压)和Vflt(浮充电压)控制。国外已开发出多款具有上述功能的专用充电集成电路,如UC3906,bq2031等。

二、DB3616C电动自行车充电器的制作实例

目前国内市场上的电动自行车大多采用36V或24V密封铅酸蓄电池组,为了降低成本,与其相配套的充电器大多采用简化的恒流恒压模式,充电曲线见图4。此方案与图1相比,由于省却了补足充电阶段(即Vlk高电压恒压过充电阶段),故电池的容量只能恢复到额定容量的80%~90%,同时,其充电转换电压也没有温度补偿。在冬夏两季易出现充电不足或过充电现象。再者,由于串联电池组中各个电池的自放电率亦不尽相同,如果采用恒定的浮充电压,那么将影响单体电池的充电状态。
本充电机实例采用图3充电模式,原理图见图5。本机选用AC/DC谐振式高效变换器组件DBX6001,作为前级隔离降压。此组件效率高达92%以上。组件输出的60V直流电,由c、d端进入后级充电电路。后级功率元件采用低导通压降器件,考虑到便携性,本机采用小型化设计,内置自动小型风扇,整机体积为75mm×130mm×50mm。IC和Q1、L、D1等组成快速恒流充电系统。IC采用SG3842,R1、DZ1、C3、C4为IC的供电电路,R4、C6决定IC的振荡频率,C5、R3为补偿元件。刚开始充电时,电池电压较低,PC不导通(原理后述)。IC①脚被R3、R4拉到地电位,⑥脚输出约100kHz脉冲,通过R8加到Q1栅极,控制Q1通断。Q1导通期间,DBX6001③脚输出的充电电流,经储能电感L、外接电池E、Q1、R6到④脚。在给电池充电的同时,电感L也存储着能量,充电电流呈线性增大,并在R6上产生检测压降,经R5、C7传递到IC③脚。当③脚上的电压达到1.1V时,⑥脚关闭脉冲,Q1截止。此时电感L中的磁场能释放,所产生的电流继续向电池供电。D1为L提供续流通道。平均充电电流的大小由R6决定。电池充满后,PC导通,⑧脚输出的5V电压经PC加到R2上,①脚的电位高于2.5V时,⑥脚关闭输出,充电器停止充电。

DBM36为36V铅酸电池组专用充电检测与控制模块,内部有两种充电模式。

Ⅵ 急:寻求电动车充电器的原理图!最好图文并茂哦。求大神帮助

字太多打不上给你个连接地址你去看下 http://hi..com/nong3888/blog/item/d56e723e60690aeb54e72384.html

Ⅶ 请问哪位朋友有电动摩托车的充电器电路图谢谢

电动自行车充电器

给电动车辆的铅酸电瓶、镍镉电瓶补充能源,要通过充电器进行。充电器的种类很多.一般以有无工频变压器区分可分为分两大类。大功率的普遍采用环牛工频变压器.虽然效率低,但是电流大(可到30A)、可靠。货运电动三轮无一例外地使用它,而30Ah以下的电瓶则大多采用开关电源技术,这样便提高了效率,甩掉了笨重的工频变压器。电动自行车充电器最大充电电流大多在2A左右。

1.采用开关电源技术的电动自行车充电器

(1)山东GD36充电器

电路原理图见图12所示。该充电器为半桥式充电器.主要性能指标为:输入电压:170-260V;输出电压:44V(可调);最大充电电流:1.8A;浮充充电电流:200~100mA。

1)电路原理

本充电器电路主要由市电整流滤波、自激加他激半桥转换、PWM控制、电压控制、电流控制、输出整流滤波六部分组成。

整流滤波市电220V/50Hz经二极管D1~D4桥式整流、电容C5~C7滤波,得到310V左右的直流电压,作为开关变换器的电源。

自激加他激半桥输出电路主要由Q1、Q2、B2、B3等元件组成。

自激启动该电路的特点是自激启动,控制电路所需辅助电源由其本身提供,无需另设。自激振荡是利用磁心饱和特性产生的,具体过程为:接通电源,C5、C6上的150V电压经R5、R7、R9、R10给开关管Q1、Q2提供基极偏压。设Q1由TR5偏压而微导通,则推动变压器B2的②-④绕组感应出极性是②脚正、④脚负的电压,于是①-②绕组感应出①脚正、②脚负电压加到Q1的发射极,加速Q1的导通。这是一个十分强烈的正反馈过程,Q1迅速饱和导通。与此同时,③-⑤绕组感应出③脚正、⑤脚负的电压,使Q2截止。

Q1饱和导通后,150电压给B3①-②主绕组充电储能,线圈中的电流和由它产生的磁感应强度随时间线性增加。但当磁感应强度增大到饱和点Bm时,电感量迅速减小,Q1的集电极电流急剧增加,增加的速率远大于其基极电流的增加,Vce升高,于是Q1退出饱和进入放大区,推动变压器B2的②-④、①-②、③-⑤绕组感应电压将反向。这又是一个强烈的正反馈过程,结果是Q1截止、Q2饱和导通。此后,这种过程重复进行而形成振荡。

工作原理如下:

他激振荡:自激振荡过程中,B3的次级输出电压经D9、D10全波整流、C19滤波,建立起PWM控制电路芯片TL494所需的工作电源。TL494开始工作,由Q3、Q4输出相位差为180°的PWM脉冲,经B2⑥-⑦、⑦-⑧绕组感应至①-②或③-⑤绕组。于是Q1、Q2便由自激转为在他激PWM脉冲驱动下轮流导通。B3的次级⑨-⑦、⑨-⑧绕组输出电压经D15全波整流、C21滤波得到+44V电压给蓄电池充电。

D6、D7是两只钳位二极管.保护开关管Q1、Q2。保护机理是泄放B3初级的反激能量和漏感储能,消除反峰电压。当Q1由导通变为截止而Q2又尚未导通时,D7导通,把反激能量再生给C6充电;当Q2由导通变为截止而Q1又尚未导通时,D6导通,把反激能量再生给C5充电。这样,一方面消除了反峰电压,另一方面因反激能量回送电源而极大地提高了电源的效率。

PWM控制以TL494为核心组成。C12、R19与内部电路形成振荡,当这两只阻容元件参数为图标数值时,振荡频率约为50kHz。(13)脚接+5V,脉冲输出方式被设置为推挽输出。⑧、(11)脚输出的推挽调宽脉冲,经驱动电路放大后送半桥输出级,控制Q1、Q2轮流导通。

R20、R24分压值设定死区控制端④脚的电位,限定最大导通占空比小于45%。C18是缓启动电容,接通电源后,C18两端电压为零,④脚的电位近似为+5V,输出脉冲占空比为零。随着C18的充电,④脚电压逐渐降低,导通占空比逐渐增大,输出电压逐渐受控。

电压、电流控制:R26和R27是电压负反馈取样电阻,R26与R27分压,对输出电压进行取样,加到TL494的①脚进行电压控制。R3是电流取样电阻,取样电压经R13加到TL494的(15)脚进行电流控制。电流控制的实质也是控制输出电压。

推挽驱动:由Q3、Q4、B2等元件组成。这是一种典型的变压器推挽式功率放大电路。D11、D14的作用与D5、D7相似,保护Q3、Q4,把B2初级的反激能量回送电源。

充电状态指示主要由运放LM358、LED1、LED2等元件组成。当充电电流较大时,电流取样电阻R3上端电压大大低于地电位,LM358的②脚电位低于③脚电位,①脚输出高电平,电池充电指示灯LED1点亮;当充电电流较小(小于200mA)时,+5V经R36、R30、R3分压,R3上端电压略高于地电位,LM358②脚电位高于③脚,①脚输出低电平,电池充电指示灯LEDl熄灭,⑦脚输出高电平.在充满后指示灯LED2点亮。充电过程中的某一期间存在LEDl、LED2同时点亮的过渡状态。

2)调试

输出电压开路输出电压为44V,改变R26或R27可校准此值。夏天电压应比44V低1V,如果是胶体电池电压还要低,否则可能会充鼓包。

输出电流短路时输出电流为1.8A,改变R13可校准此值。

状态指示调试当充电电流为200mA时,蓄电池充满指示灯LED2应开始点亮。改变R30可校准该状态。

3)小结

很多半桥式充电器,以TL494为核心,结构十分类似,TL494内部包含了振荡、锯齿波形成、PWM、运放等基本单元电路,稳压和限流反馈都加到运放端。另以一块比较器集成电路为辅助,进行电流分段控制,这些集成电路工作需要电源、通电起始、启动电路工作为它们供电,然后由辅助电源逐步建立稳定的电源,为这些集成电路工作提供能量。

这些充电器有些故障类同,例如空载有较低输出电压,带负载输出消失。多数是TL494损坏,或者供电电路有故障。空载有输出说明自激正常,但是没有建立起正常的控制系统,带负载自激条件被破坏停振,输出电压消失。

对于空载无任何输出的半桥式充电器,在保险管损坏的情况下,首先怀疑两只开关管是否击穿,在更换NPN管的同时,检查2.2Ω等周边元件是否损坏。更换零件后通电检查,仍然空载,但要在市电输入端串联一只普通的100W白炽灯泡,当开机时,白炽灯泡闪亮一下变暗,同时半桥式充电器各种发光管正常发光,说明基本修好了,可以进行其他项目了;如果白炽灯泡常亮不变暗,说明充电器有其他故障。

有一类开关管的损坏原因是TL494完好,正向通道往后直到开关管正常。但是稳压反馈系统有问题。TL494输出到开关管的脉冲占空比失控(增加),造成开关管的损坏。因此,最好在换开关管后,用稳压电源给集成电路供电,模拟改变稳压反馈系统反馈电压,用示波器观察占空比是否相应变化。

维修充电器安全问题很重要,一定要搞清楚电路中哪里带市电,哪里不带市电再下手,不要带电触摸内部线路和零件。用万用表测试时,要拔掉蓄电池和市电插头,对电容放电后再进行,对滤波电容放电可用普通白炽灯泡进行。

充电器的调整很重要,直接影响电池使用寿命。以12V电池为例,浮充电压13.5V~13.9V可长期进行,一般输出电压不要超过14.2V,否则易使电池失水。需要提醒的是:在控制充电压时胶体电池电压应低一些;夏天电压应低一些,降低幅度为每格(12V电池为6格)每℃4mV。维修充电器,关键是找到电压负反馈的电压取样电阻。熟练掌握减小取样电阻上半部分电阻值,输出电压降低;增大取样电阻上半部分电阻值,输出电压升高。或者反过来,减小取样电阻下半部分电阻值,输出电压升高;增大取样电阻下半部分电阻值,输出电压降低的方法。其次是找到充电电流取样电阻,以及电流检测比较器,掌握改变各阶段充电电流的方法。

参考地电位,在分析电流检测比较器电路时十分重要。这是因为充电器电流检测比较器的集成电路是单电源供电,比较器的一端接地,比较器的另一端接取样电阻,而取样电阻上的电压一般为负电压。

(2)石家庄某公司单激式充电器

充电器的原理图见图13。单激式充电器启动电路和半桥式不同,一般直接取自市电整流滤波后的平滑直流电,集成电路也以UC3842、UC3845和UC3844N为主,也有采用电路更加简洁的三端开关式TOP226集成块,UC38xx是电流控制PWM单输出专用芯片。广泛用于电脑显示器电源、电动车充电器等电源类产品。

UC38xx和TL494类似,内部含有振荡器(OSC),误差放大器、脉宽调制(PWM),参考电压产生等PWM专用芯片必备的内电路。还具有三个特点,图腾柱式输出电路,输出电流可达1A,可直接驱动功率开关VDMOS管:具有内部可调整的参考电源。可以进行欠压锁定;这个带锁定的PWM,可以进行逐个脉冲的电流限制,也叫逐周(期)限制。

图13中R18、D5、N5等组成启动和供电电路。加电瞬间。市电整流滤波后的平滑直流电通过R18给UC3845⑦脚以启动供电,此时D5反偏截止。UC3845工作后,开关变压器各绕组有感应电压,副绕组电压经D4整流供N5进行稳压,D5导通,给UC3845提供稳定的工作电压,完成启动和供电。图中LM393是一个变形的施密特电压比较器,用作市电过压保护,当市电过压时,比较器翻转,①脚呈低电平,D3导通将UC3845关闭。输出稳压的负反馈系统由光电耦合器、基准电源N6、RV1、R27、R26、R23等组成。稳压过程:输出电压由于某原因上升时,流经光电耦合器发光二极管电流增加,光强增加,光电耦合器光电三极管加剧导通。内阻减小,使UC3845的②脚电压升高,减小PWM占空比,拉低输出电压。反之,增大PWM占空比,使输出电压拉高,起到自动稳定输出电压的作用。

1)过流(过载)保护

开关管过流信号取自电阻R3、R4。一旦开关管过流,UC3845的③脚电压超过1V,内部电路就会关闭输出,实现过流(也叫过载)保护。增大取样电阻,就是降低了起控电流的动作点,电源输出功率也相应减小。

2)过压保护

电源输出端的LM339四个电压比较器A、B、C、D反相端电位均固定在+5V。A和B检测输出电压,当输出端电压较低时即充电初始阶段,A的②脚为低电平,低压灯LOW亮,B的①脚也为低电平,高压灯HI也亮;当充电电压升高时。A翻转,低压灯LOW熄灭,高压灯HI继续亮,当电池将充满时,电池电压升高,B翻转,①脚为高电平,高压灯HI熄灭。同时,C的(13)脚为高电平,D的(14)脚也为高电平,N7导通,J1吸合,J1-1(常闭)断开将取样电阻R4接入,增大了电流取样电阻,开始起控使输出电流下降,进人浮充电阶段。N4、W1、R8、R7构成12V稳压电源,为12V的继电器提供电源。

(3)天能TN-1智能负脉冲充电器

图14是天能TN-1智能负脉冲充电器电路图。这个充电器主要部分是典型的半桥式两段充电器,和前面介绍的图12充电器基本一样。这里主要介绍负脉冲充电部分的工作原理。这部分电路由放电开关、负脉冲加载控制、脉冲振荡器三部分组成。

放电开关是三极管Q6、Q6导通,其集电极和发射极将电瓶短路,电瓶放电。Q6截止,电瓶恢复充电。Q5和Q6是直接耦合,俗称达林顿管。Q6受加载负脉冲控制和振荡器联合控制。加载负脉冲控制由IC3的C和D构成。D接成反相器(电路中,与非门两个输入并联看作一个非门),只有C的两个输入都为高电平时,③脚为低电平,经D反相使Q6导通,给电瓶放电。C的②脚来自多谐振荡器的每秒1个(脉宽3ms)正脉冲,C的①脚来自两阶段电流检测电路IC2的①脚,恒流充电时①脚为高电平。此时,负脉冲才起作用。

脉冲振荡器由IC3的A和B以及C24、C25、两只100kΩ电阻构成典型的多谐波振荡器,其充放电时间常数不同,高电平3ms,低电平1250ms。负脉冲充电,可提高充电接受能力,降低充电温度;国内还有可以消除硫化延长电瓶寿命的讲法。上述充电器在放电时,并没有断开充电电路。

后面还有好多,图片只能插入一个,给你个地址自己看吧:

http://www.dzjs.net/html/dianziDIY/2008/0623/3189.html

Ⅷ 3842电动车充电器完整原理图

3842电动车充电器原理是220v交流电经T0双向滤波,D1整流为脉动直流电压,再经C11滤波形成租弯稳定的300V左右的直流电。

电瓶充电器里面所用的3842集成电路,是一款高性能单端输出式电流控制型脉宽调制器芯片,具有可微调的振荡器,精确控制占空比,以及高增益误差放大器,工作频率可达到500KHz,启动电流仅需1mA。

3842脚辨认方法是,将芯片标识、型号在上,放置在桌面,定位口下第一脚就是芯片的1脚,逆时针数1、2、3、4,然后与4脚对面的就是5、6、7、8脚。

芯片1脚为补偿端,2脚为反馈端,3脚为过流检测端,4脚为RC时钟端,5脚为电源地端,6脚为控制输出端,7脚为电源正端,8脚为基准电压端。

充电器常见的故障:

1、高压故障。

高压故障的主要现象是指示灯不亮,其特征有保险丝熔断,弊仔闷整流二极管D1击穿,电容C11鼓包或炸裂。Q1击穿,R25开路。

2、低压故障。

低压故障大部分是充电器与电池正负极接反,导致R27烧断,LM358击穿。其现象是红灯一直亮,绿灯不亮,输出电压低,或者输出电压接近0V,更换以上元件即可修复。

3、高压、低压均有故障。

高低压电路均有故障时,通电前应首先全面检测所有的二戚卖极管,三极管,光耦合器4N35,场效应管,电解电容,集成电路,R25,R5,R12,R27,尤其是D4(16A60V,快恢复二极管),C10(63V,470UF)。

Ⅸ 电动汽车充电系统原理图

由车载动力电池提供能量,并由电机提供动力来实现行驶。电动汽车行驶消耗的是电池的能量,电池电量消耗后需要补充电量, 通过把电网或者其他储能设备中的电能转移到车辆的电池的过程。

电网或者储能设备中的电能,需要经过充电设备的转化,以匹配电动汽车动力电池的技术特性才能完成充电。充电设备的转化过程还需要和电动汽车上动力电池的管理系统BMS(Battery Management System)协商,以适当的电压和电流来完成充电,并且在充电过程中,充电电流会随着充电进程而减小,初期可以大电流充得快一些,后期小电流充得慢一些。交流慢充:交流充电桩没有功率转换模块,不做交直流转换,输出交流电,接入车内,通过车上的充电机转换为直流电后再输入电池。充电功率取决于车载充电机功率。目前主流车型车载充电机有2Kw、3.3Kw、6.6Kw几种。总的来说充电较慢,一般的混合动力车型需要4-6小时充满,纯电动车要8小时以上充满,充电倍率基本都在0。5C以下。直流快充:直流充电桩内置功率转换模块,能将电网的交流电转换为直流电, 不须经过车载充电机转换,直接接入车内电池。充电功率取决于电池管理系统和充电桩输出功率,两者取小。

Ⅹ 电动车充电器电路图

见附图:电动自行车充电器有多种,需要根据蓄电池的电压来选择,常见的24V、36V、48V、60V,还有汽车的充电桩。可以上网搜索。


热点内容
太原公交自行车价格 发布:2024-11-08 19:43:58 浏览:88
杭州拉萨川藏自驾游路线 发布:2024-11-08 18:56:22 浏览:170
越野摩托车后备箱 发布:2024-11-08 18:56:14 浏览:760
乌尼莫克房车油箱 发布:2024-11-08 18:27:41 浏览:61
大通原厂C型五座房车 发布:2024-11-08 18:17:15 浏览:816
五菱plus内饰拆解 发布:2024-11-08 18:16:35 浏览:387
南京长城房车价格表 发布:2024-11-08 18:10:16 浏览:557
这个男人喜欢玩越野摩托 发布:2024-11-08 18:01:46 浏览:400
印度一个人旅游安全吗 发布:2024-11-08 17:49:57 浏览:695
美国豪华的房车图片大全 发布:2024-11-08 17:44:03 浏览:295