当前位置:首页 » 新型汽车 » 电动汽车发展与驱动电机

电动汽车发展与驱动电机

发布时间: 2023-03-27 13:58:33

『壹』 电动汽车有哪几种驱动电机

直流电动机、交流电动机、永磁同步电动机交流异步电动机等等

『贰』 新能源电动汽车驱动电机的分类、特点和优劣势分析

近年来,伴随着行业的发展,新能源 汽车 逐渐被广泛使用,各大厂商也推出了自家的明星产品。电机作为电动 汽车 最重要的部件之一,各大厂商纷纷选择各类电机运用在自家的产品上。而不同的电机到底有什么差别?又各自被运用到哪些车型上去了?

什么是电机? 所谓电机,就是将电能与机械能相互转换的一种电力元器件。 当电能被转换成机械能时,电机表现出电动机的工作特性;当机械能被转换成电能时,电机表现出发电机的工作特性。大部分电动 汽车 在刹车制动的状态下,机械能将被转化成电能,通过发电机来给电池回馈充电。 电动机的发展状态及分类 电动 汽车 经常采用的驱动电机有 直流电机、异步电机、永磁同步电机和开关磁阻电机四类 直流电动机 最早应用于电动 汽车 的是直流电机,这种电机的特点是控制性能好、成本低。随着电子技术、机械制造技术和自动控制技术的发展,异步电机、永磁同步电机和开关磁阻电机表现出比直流电机更加优越的性能,这些类型的电机正在逐步取代直流电机。

优点:成本低、易控制、调速性能良好 缺点:结构复杂、转速低、体积大、维护频繁 特性: 在电动 汽车 发展早期,直流电机被作为驱动电机广泛应用,但是由于其结构复杂,导致它的瞬时过载能力和电机转速的提高受到限制,长时间工作会产生损耗,增加维护成本。

此外,电动机运转时电刷冒出的火花使转子发热,会造成高频电磁干扰,影响整车其他电器性能。因此,目前电动 汽车 行业已经基本将直流电动机淘汰。 应用代表车型:早期部分车型 小结:基本上处于淘汰阶段,应用车型都是早期上市车型。 永磁同步电机

永磁式电动机根据定子绕组的电流波形的不同可分为两种类型,一种是无刷直流电机,它具有矩形脉冲波电流;另一种是永磁同步电机,它具有正弦波电流。

这两种电机在结构和工作原理上大体相同,转子都是永磁体,减少了励磁所带来的损耗,定子上安装有绕组通过交流电来产生转矩,所以冷却相对容易。由于这类电机不需要安装电刷和机械换向结构,工作时不会产生换向火花,运行安全可靠,维修方便,能量利用率较高。

永磁式电动机的控制系统相比于交流异步电机的控制系统来说更加简单。但是由于受到永磁材料本身的限制,在高温、震动和过流的条件下,转子的永磁体会产生退磁现象,所以在相对复杂的工作条件下,永磁式电机容易发生损坏,故这一块还有待继续发展改善。

而且永磁材料价格较高,因此整个电机及其控制系统成本较高,目前只有稀土资源丰富的中国比较倾向于使用永磁电机的电动 汽车 驱动方案。像日本、欧洲,要么是使用轻稀土的永磁材料做永磁电机,要么是直接改用无需稀土材料但对控制器设计要求更高的开关磁阻电机。

优点:效率高、结构简单、体积小、重量轻 缺点:成本较高、高温下磁性衰退

特性: 所谓永磁,是指在制造电机转子时加入永磁体,使电机的性能得到进一步提升。而所谓同步,则指的是转子的转速与定子绕组的电流频率始终保持一致。因此,通过控制电机的定子绕组输入电流频率,电动 汽车 的车速将最终被控制。 与其他类型的电机相比较,永磁同步电机最大优点就是具有较高的功率密度与转矩密度,说白了,就是相比于其他种类的电机,在相同质量与体积下,永磁同步电机能够为新能源 汽车 提供最大的动力输出与加速度。这也是在对空间与自重要求极高的新能源 汽车 行业,永磁同步电机成为首选的主要原因。 但是,它也有自身的缺点,转子上的永磁材料在高温、震动和过流的条件下,会产生磁性衰退的现象,使得电机容易发生损坏。

应用车型:比亚迪秦、比亚迪宋DM、宋EV300、北汽EV系列、腾势400、众泰E200、荣威ERX5等。 小结: 被广泛使用,成为主流电机,目前被各大新能源 汽车 品牌车型选用。 交流异步电机 交流异步电机是目前工业中应用十分广泛的一类电机,其特点是定、转子由硅钢片叠压而成,两端用铝盖封装,定、转子之间没有相互接触的机械部件,结构简单,运行可靠耐用,维修方便。

交流异步电机与同功率的直流电动机相比效率更高,质量约轻了二分之一左右。如果采用矢量控制的控制方式,可以获得与直流电机相媲美的可控性和更宽的调速范围。由于有着效率高、比功率较大、适合于高速运转等优势,交流异步机是目前大功率电动 汽车 上应用最广的电机。 但在高速运转的情况下电机的转子发热严重,工作时要保证电机冷却,同时异步电机的驱动、控制系统很复杂,电机本体的成本也偏高,另外运行时还需要变频器提供额外的无功功率来建立磁场,故相与永磁电机和开关磁阻电机相比,异步电机的效率和功率密度偏低,不是能效最优化的选择。 异步电动机应用的较多的地区是美国,这也被人为是和路况有关。在美国,高速公路已经具有一定的规模,除了大城市外, 汽车 一般以一定的高速持续行驶,所以能够让高速运转而且在高速时有较高效率的异步电动机得到广泛应用。 优点:结构简单、可靠性好、成本易控 缺点:效率低、调速性差

特性: 相比于永磁同步电机,异步电机的优点是成本低、工艺简单、运行可靠耐用、维修方便,而且能忍受大幅度的工作温度变化。 反之,温度大幅变化会损坏永磁同步电动机。尽管在重量和体积方面,异步电动机并不占优,但其转速范围广泛以及高达20000rpm左右的峰值转速,即使不匹配二级差速器也能够满足该级别车型高速巡航的转速需求,至于重量对续航里程的影响,高能量密度的电池能够“掩盖”电机重量的优势。

应用车型:特斯拉Model S、Modle X、江铃E200、江铃E100、江铃E160、众泰云100S、芝麻E30等。 小结:只是少量车型选用,但也不乏主流车型,从目前来看,该类电机不会成为趋势。 开关磁阻电机 开关磁阻电机作为一种新型电机,相比其他类型的驱动电机而言,它的结构最为简单,定、转子均为普通硅钢片叠压而成的双凸极结构,转子上没有绕组,定子装有简单的集中绕组,具有结构简单坚固、可靠性高、质量轻、成本低、效率高、温升低、易于维修等优点。

它具有直流调速系统可控性好的优良特性,同时适用于恶劣环境,适合作为电动 汽车 的驱动电机使用。业内人士预测,开关磁阻电机将成为电动 汽车 领域的一匹黑马。 特性: 但开关磁阻电机有转矩波动大、需要位置检测器、系统非线性特性,磁场为跳跃性旋转,控制系统复杂;对直流电源会产生很大的脉冲电流等缺点。另外开关磁阻电动机为双凸极结构,不可避免地存在转矩波动,噪声是开关磁阻电动机最主要的缺点。 但近年来的研究表明,采用合理的设计、制造和控制技术,开关磁阻电动机的噪声完全可以得到良好的抑制。像目前日本对开关磁阻电机的研究比较深入,日本电产的开关磁阻电机也广泛应用于电动 汽车 、家电等各类行业中。目前中国国内也渐渐有厂家关注这块电动 汽车 驱动电机的未来发展方向 优点:结构简单、体积小轻便、效率高、成本低 缺点:噪声振动大、输出扭矩脉动

应用代表车型:无 小结: 暂未被广泛应用,但未来有可能因为其优良特性,而成为主流电机。 作为电动 汽车 重要组成部件,不同电机的选用,会决定该电动车生产成本与使用情况。对于时下来讲,被广泛应用的尚属永磁同步电机,最主要的两点是可靠性好和成本易控。 -------------------华丽丽的分割线--------------------- 【番外知识储备篇】 外转子电机: 指外壳旋转、轴固定的电机。

特点: 1.外转子电机具有节省空间,设计紧凑且美观的特点。适合安装在叶轮里,具有最佳的冷却效果。无需V型带、附加的张紧带或其他设备。 2.电机使用一对密封的深沟球轴承,寿命长。高精度的球轴承可使振动降到最低,运行噪音低。 3.特殊的鼠笼转子结构及一次压铸成型工艺,确保电机启动平滑,转速高。 4.选用高品质电磁材料及特殊的电磁结构设计,确保电机高效运行,并且更加节能。 5.在电机绕组端装有高灵敏度热保护器,确保电机安全可靠的运行。 内转子电机: 内转子一般极数少,转速高,转矩小;外转子一般极数多,转速低,转矩大。 在转子重量相同情况下,内部转的没有外面转的转动惯量大,所以里面转的kv高,力矩低;外转转动惯量大,从而提高了在不稳定负载下电动机的效率和输出功率。 内转电机的扭力小,转速高,一般用交通工具模型(如车模、船模),而外转子的电机散热较好。

内转子电机和外转子电机的区别 通俗一点来说,两者的区别就是里面转与外面转的区别。 内转子电机是转子电机主轴一起转,电机机座固定,用外壳做定子,内部和主轴做转子。 外转子电机是转子随着电机外壳一起旋转,电机主轴固定,外壳做转子,内部和主轴做定子。 盘式电机: 又叫碟式电机,具有体积小、重量轻、效率高的特点,一般电机的转子和定子是里外套着装的,盘式电机为了薄,定子在平的基板上,转子是盖在定子上的,一般定子是线圈,转子是永磁体或粘有永磁体的圆盘。 除了效率高和体积小外,盘式电机的独特结构使得其还具有很多普通电机无法比拟的优点。比如线圈和定子间的间隙小,其相互感应也效应很小。无刷的结构使得盘式电机的应用更为灵活,包括要求电机大孔径穿孔的情况都能使用。双轴空气间隙结构能够使盘式电机产生自然的泵吸作用,可谓是盘式电机自带的“内置冷却装置”。

盘式电机在我们的生活中的应用十分广泛,绝大多数普通电机不适用或者难以满足的场合都能见到盘式电机的身影。例如新型的电动 汽车 、混合动力 汽车 以及水下推进器等对发动机重量和体积要求较高的交通工具都会使用盘式电机作为驱动。 总结一下这三种电机: 1、外转子电机扭矩大转速低;

2、内转子电机转速高转矩小;

3、盘式电机轴向尺寸小,散热好,但功率受限制。 在应用方面,轮毂电机应用盘式电机较多;轮边电机应用外转子电机较多。

『叁』 新能源汽车上驱动电机的特点

答:体积小,功率大 效率高,高效区广 安全性和舒适度高

『肆』 新能源电动汽车驱动器

目前新能源汽车产业发展非常好,也带动了一些与新能源汽车产业相关的产业。比如我们最常遇到的新能源汽车的零部件,对新能源汽车的零部件还是很讲究的。那么,朋友们对新能源电动车司机了解吗?如果不清楚的话,今天的边肖汽车将为你的朋友们简单介绍一下。

新能源电动汽车驾驶员:概念

新能源电动蒸汽伴侣需要由电机驱动系统、电池系统和车辆调节系统三部分组成,其中电机驱动系统直接将电能转化为机械茄昌仿能,这决定了电动汽车的性能指标。因此,驱动电机的选择尤为重要。

新能源电动汽车驾驶员:分类

根据驱动原理,电动汽车的驱动电机可以包括以下四种类型:

1.开关磁阻电机

开关磁阻电机作为一种新型电机,与其他类型的驱动电机相比,结构最简单。定子和转子是由普通硅钢片制成的双凸极结构。转子上没有绕组,定子装有简单的集中绕组。它具有结构简单牢固、可靠性高、重量轻、成本低、效率高、温升低、维修方便等优点。而且它具有DC调速系统可控性好的优良特性,同时满足恶劣环境下客观条件的要求,非常适合作为电动汽车的驱动电机。

2.永磁电机

根据定子绕组电流波形的不同,永磁电机可分为两种类型。一种是无刷DC电机,具有矩形脉冲波电流;另一种是永磁同步电机,它有正弦波电流。永磁电机的调节系统比交流异步电机简单。但由于永磁材料本身的限制,转子的永磁体在高温、振动、过流的情况下会引起退磁。

3.交流异步电动机

交流异步电机是目前工业上广泛使用的一种电机。其特点是定子和转子由硅钢片叠片而成,硅钢片两端由铝盖封装,定子和转子之间没有机械零件相互接触。它结构简单,运行可靠耐用,维修方便。交流异步电机比同等功率的DC电机相对效率高,质量轻一半左右。

4.直流电动机

在电动汽车发展的初期,很多电动汽车基本上都采用了DC电机方案。关键是看中DC电机的成熟产品,轻松的调节方式和出色的调速。但是,由于DC电机本身的短板非常突出,其机械结构复杂(电刷和机械换向器等)。)限制了其瞬时过载能力和电机转速的进一步提高。而且在长时间工作的情况下,电机的机械结构会造成损耗,增加维护成本。另外,电机转动时,电刷火花会使转子发热,浪费能量,使散热困难,还会造成高频电磁干扰。这些因素基本上会影响到具体的车辆性能。

新能源电动汽车驾驶员:内容简介

随着现代调节理论的发展,各种现代调节技术和微处理器在电动汽车驱动调节系统中发挥着至关重要的作用。电动汽车动态调节系统必将向多学科交叉和融合的方向发展,成为一个集机电一体化的智能系统。

(1)现状

目前交流异步电动机采用的调节方案有两种:矢量调节和直接转矩调节。对于永磁同步电机驱动来说,由于调节系统相当复杂,往往需要两种或两种以上的调节方案组合才能达到最佳的调节效果,比如利用最大转矩调节和弱磁调节的原理实现电机的效率优化和宽范围调速方案,以及转矩调节和PWM调节相结合的调节方案。

近年来,电动汽车驱动系统出现了几种新技术,如最佳效率调节、无速度传感器交流调速系统和高频交流脉冲密度调制技术。随颤纤着交流电机在电力传动系统中的应用,传统的线性调节算法,如Pl和PID调节方法,已经不能满足纯能量调节的要求。目前,各种现代调节技术已经应用于电动汽车的电机驱动调节系统,如模糊调节、自适应调节、神经网络和专家系统等。

(2)发展趋势

从I电动汽车的电机可以看出,交流电机仍将是未来电动汽车电机驱动系统的首选,其调节系统将随着电力电子技术的发展而优迅氏化,交流电机调节装置和调节技术将不断发展。随着现代调节理论的发展,各种现代调节技术和微处理器在电动汽车驱动调节系统中发挥着至关重要的作用。电动汽车动态调节系统必将向多学科交叉和融合的方向发展,成为一个集机电一体化的智能系统。

《电动汽车驱动与调节》旨在对纯电动汽车的驱动系统进行建模,深入研究电动汽车驱动系统速度闭环调节的稳定性怀疑和调节策略。根据两种电动汽车驱动系统的关键主要参数,建立了被控对象的简化数学模型,设计了PID调节器、自适应调节器、模糊调节器和预测调节器。借助于数值模拟,进行了大量的分析,研究了它们的调节性能。该书收录了作者近期的研究成果,对电动汽车的设计具有至关重要的指导意义。《电动汽车驾驶与法规》在理论上与实践相关,其研究成果颇为丰富。很容易理解和说明。可作为高校相关专业研究生、本科生,以及电动汽车及相关领域的工程师、研究人员的参考书。

看完小汽车系列的简介,你对新能源电动车司机有必要了解吗?那么,你的朋友们喜欢边肖汽车今天为你的朋友们介绍的内容知识吗?汽车边肖认为我们还需要更多的了解这些知识,因为未来新能源汽车的发展会非常好。最后,希望边肖汽车的简介能给朋友们解决问题。

百万购车补贴

『伍』 新能源电动汽车驱动电动机介绍

新能源车伙伴应该基本熟悉,所以电动车伙伴应该更熟悉!因为我们经常接触到电动自动驾驶,它为我们的电动汽车奠定了必要的基础。那么朋友们对新能源电动车了解吗?小伙伴们不用担心因为有小汽车编辑,所以今天小汽车编辑就给大家简单介绍一下。

新能源电动车:新能源电动车

新能源电动汽车,英文:(新能源电动汽车)新能源电动汽车的组成包括:电驱动及调节系统、驱动力传递等皮迹机械系统、完成设定任务的工作装置等。

电动驱动和调节系统是电动汽车的核心,也是与内燃机汽车最大的区别。电动驱动调节系统由驱动电机、电源和电机调速装置组成。电动汽车的其他装置基本上与内燃机相似。

新能源电动汽车:优势

电动汽车是指以车载电源为动力,由电动轮驱动,满足道路出行和安全法规各项要求的车辆。它利用储存在电池中的电能来启动。有时12或24节电池用来开车,有时更多。

无污染,噪音低。

无内燃机电动车产生的废气不会造成尾气污染,非常有利于环保和空气体净化,几乎&ldquo零污染。。众所周知,内燃机和汽车尾气中的CO、HC、NOX、颗粒物、臭气等污染物经过发展变化成为酸雨、酸雾和光化学烟雾。电动车没有内燃机造成的噪音,电动机的噪音比内燃机小。噪音对人的听力、神经、心血管系统、消化、内分泌和免疫系统也有危害。

高能效和多样化

对电动汽车的研究表明,其能效已经超过了汽油动力汽车。特别是在城市,汽车走走停停,行驶速度不高,电动车更适合。电动车停了就不耗电了。在制动过程中,电动机可以自动转换成发电机,这样制动减速时的能量就可以通过。有研究表明,同样的原油经过粗炼后送到发电厂发电,然后充入电池,再由电池驱动汽车。其能量比汽油提炼后的能量高,再由汽油机驱动汽车,有利于节约能源,缩短二氧化碳排放。

另一方面,电动汽车的应用可以有效缩短对石油资源的依赖,将有限的石油用于更重要的方面。充入电池的电能可以从煤、天然气、水力、核电、太阳能、风力、潮汐等能源转换而来。此外,如果电池在夜间充电,可以避免用电高峰,有利于平衡电网负荷,缩短成本。

结构简单,维修方便

与内燃机车相比,电动车结构更简单,转动和传动部件更少,维护工作量更少。使用交流感应电机时,电机无需维护,更重要的是电动车操作简单。

动力成本高,行驶里程短。

目前电动车在技术上还没有内燃机车完善,尤其是电源(电池)使用寿命短,使用成本高。电池储能小,一次充电后续航里程不理想,电动车价格相对较高。但从发展的角度来看,随着科技的进步和相应人力物力的投入,电动汽车的问题将逐步得到解决。扬长避短,电动汽车将逐渐遍布全国,价格和使用成本肯定会下降。

支持发展的电网技术

作为分布式储能单元接入电网的关键技术和调控策略的电动电池更换站的运行特点;电池梯的筛选原则、分组方法和系统方案;更换站内多用转换器;更换站场和储能站的综合监控系统;置换站与储能站一体化示范工程。

电动汽车充电需求特征与大规模电动汽车向电网充电的关系;汽车有序充电法规管理系统:汽车电动有序充电测试系统。

电动汽车与电网互动的调控策略及关键技术:电动汽车智能充放电电机、智能车载终端以及电动汽车与电网的交互协调调节系统;电动汽车与电网相互作用实验验证系统:电动汽车充放电设施检测技术。

电动汽车充放电新技术:电动汽车智能充放电调控策略及巡检技术:充电设施与电网互动运行州腔关键技术。

大型电动汽车的电池更换技术、计量充电技术和资产管理技术;充电设施运营的商业模式;基于物联网的智能充换电服务网络运营管理系统建设方案。

支持电池续航和旅行的电池技术

目前很多新能源汽车的电池仍然是传统的铅酸电池,在重量、存储容量、安全系数等方面似乎与新能源汽车的初衷基本相悖。因此,如果不能突破汽车电储能技术的瓶颈,开发出划时代的产品,就无法真正让新能源汽车得到广泛应用。现在这个发展水平,可以参考特斯拉电动车,技术上同比先进。它可以通过整合机箱和电池来缓解这个矛盾。当然,特斯拉电动车在安全系数等其他方面也有很大的疑虑,所以并没有得到广泛的销售。

新能源电动汽车:驱动电机

驱动电机的作用是将电源的电能转化为机械能,通过传动装置直接驱动车轮和工作装置。目前,DC系列电机广泛应用于电动汽车。这种电机具有“软”的机械特性,非常符合汽车的行驶特性。然而,由于换向火花,DC电机功率低、效率低、维护工作量大。随着电册握衫机调速技术的发展,必然会逐渐被DC无刷电机(BLDCM)、开关磁阻电机(SRM)和交流异步电机所取代,如轴向磁场无机壳的DC系列电机。

调速装置

电机调速装置是为电动汽车的变速和变向而设置的。其功能是调节电机的电压或电流,完成对电机驱动力矩和旋转方向的调节。

在早期的电动汽车中,DC电机的调速是通过串联电阻或改变电机磁场线圈的匝数来实现的。因为它的调速是步进式的,会造成额外的能耗或者电机结构复杂,所以现在很少使用。目前广泛使用的是晶闸管斩波调速,通过均匀改变电机端电压,调节电机电流,可以实现电机的无级调速。随着电力电子技术的不断发展,逐渐被其他巨型晶体管斩波调速装置(GTO、MOSFET、BTR、IGBT等)所取代。).从技术发展来看,随着新型驱动电机的应用,电动汽车调速向DC变频技术的应用转化将是必然趋势。

在驱动电机的旋转方向调节中,DC电机依靠接触器改变电枢或磁场的电流方向来实现电机的旋转方向,这使得电路复杂,可靠性降低。采用交流异步电机驱动时,电机方向的改变只能改变磁场三相电流的相序,可以简化调节电路。此外,交流电机及其变频调速技术的使用,使得电动汽车的制动能量回收和调节更加方便,调节电路更加简单。

传动装置

汽车电传动装置的作用是将电机的驱动扭矩传递给汽车的驱动轴。用电动轮驱动时,传动装置的大部分零件往往可以忽略。因为电机可以带负载启动,所以电动车不需要传统内燃机车的离合器。因为驱动电机的旋转方向可以通过电路调节来改变,所以电动车不需要内燃机汽车变速箱中的倒档。使用电机无级调速时,电动汽车可以忽略传统汽车的变速箱。电动轮驱动时,电动汽车也可以省略传统内燃机汽车传动系统的差速器。

传动装置

驱动装置的作用是通过车轮将电机的驱动力矩转化为作用在地面上的作用力,驱动车轮行走。它的组成与其他汽车相似,由车轮、轮胎和悬架组成。

转向装置

转向装置是为了转动汽车而设置的,由转向器、方向盘、转向机构和方向盘等组成。作用在方向盘上的调节力通过转向器和转向机构使方向盘偏转必要的角度,实现汽车的转向。电动汽车大多采用前轮转向,工业上使用的电动叉车往往采用后轮转向。汽车的电动转向装置包括机械转向、液压转向和液压动力转向。

制动装置

电动汽车的制动装置和其他车辆一样,是为了使车辆减速或停止而设计的。一般由制动器及其操作装置组成。在电动汽车上,大部分也有电磁制动装置,可以通过驱动电机的调节电路实现电机的发电运行,并将减速制动时的能量转化为给电池充电的电流,以便进一步使用。目前大功率乘用车采用国产电动汽车,为空空气制动设备提供续航NAILI滑片空空气压缩机,关键是压缩空空气的制动方式。

看完小汽车系列的简介,朋友们对新能源电动车的问题有必要了解吗?那么,你的朋友们喜欢边肖汽车今天为你的朋友们介绍的知识内容吗?我觉得这些小伙伴还是需要多了解一点内容知识,对我们还是很有帮助的。最后希望车系的简介能给朋友们解决问题。

百万购车补贴

『陆』 新能源电动汽车电机

新能源汽车是目前比较流行的出行方式,新能源汽车还有相当大的发展空时间,也就是说车辆的电池部分对于电池寿命有很高的提升空时间。作为传统发动机(变速箱)功能的替代,电机和电控系统的性能直接决定了电动汽车的爬坡、加速、最高车速等关键性能指标,那么你呢我们一起来看看汽车编辑器吧。

汽车电动机简介:简介

电机驱动响应是新能源汽车的三大核心部件之一,也是电动汽车驱动的关键执行结构,其驱动特性决定了汽车驱动的关键性能指标。电机驱动系统的关键由电机、功率变换器、调节器、检测传感器和电源组成。与大多数工业电机不同,汽车使用的驱动电机应具有调速范围宽、起动转矩大、后备功率大镇棚、效率高的特点。此外,它们还需要高可靠性、耐高温和防潮、结构简单、成本低、维护简单和适合大规模生产。未来,我国电动汽车驱动电机系统将朝着永磁化、数字化、集成化方向发展。目前,电动汽车使用的电机一般包括DC电机、交流感应电机、永磁电机和开关磁阻电机。

汽车电机简介:电动汽车DC电机

优点:起动加速度大,电磁转矩调节特性好,调速方便,调节装置简单,成本低。

缺点:有机械换向器。高速重载运行时,换向器表面有火花,不适合电机转速过高。与其他驱动系统相比,它处于劣势,并已逐渐被淘汰。

汽车电机简介:电动汽车交流感应电机

交流电机的定子是用来产生磁场的,它由定子铁芯、定子绕组、铁芯外的外壳和支撑转子轴的轴承组成。交流电机具有价格低廉、易于维护、体积小等优点,但交流电机的调节相当复杂。它已经成为交流驱动电动汽车的首选斗旅棚。

汽车电机简介:永磁电机

永磁体代替了DC电机中的磁场线圈和感应电机中定子的励磁机,用于产生气隙磁通。永磁电机具有效率高、转矩惯性比大、能量密度高等优点,特别是低速大转矩的优点,能够满足汽车在复杂多变的道路上行驶的需要。是一款高性能低碳环保电机,有望与交流感应电机竞争稀土永磁材料市场。尤其是在中小功率范围内,得到了广泛的应用。

电机简介:电动汽车开关磁阻电机

开关磁阻电机的定子和转子基本上是空则由普通硅钢片制成的双凸极结构。

优点:简单可靠,调速范围宽,效率高,调节灵活,成本低。

缺点:转矩波动大、噪声大、位置检测器、非线性等特点。应用是有限的。

今天的汽车小系列简介到此结束。以上是汽车小编介绍的电动车电机简介。电机是新能源汽车的重点,新能源汽车电机及电控系统所面临的工况同比复杂:需要能够频繁启停、频繁加减速、低速爬坡时要求高扭矩、高速行驶时要求低扭矩、变速范围大;混合动力汽车还必须处理电机启动、电机发电和制动能量反馈等特殊功能。

百万购车补贴

『柒』 新能源汽车电驱动技术发展和产业化趋势

新能源 汽车 的动力系统包括电驱动系统与电源系统两大类

电驱动系统包含电机、电控制器、减速箱,是驱动电动 汽车 行驶的核心部件;电源系统包含车载充电机(OBC)、DC-DC 转换器和高压配电盒,是动力电池组进行充电、电能转换及分配的核心部件。

电驱动产业链涉及环节较多,可以概括为零件—总成—系统—整车厂四大层级。

上游零部件包括永磁体、硅钢体、功率模块、电容、传感器等,这一级的玩家对在整车产业链中属于“三级供应商”。在零部件基础上进一步设计组装得到电机总成、电控总成与传动总成,这一级的玩家可以称为车企的“二级供应商”;各个单独总成进一步集成为电驱动系统供货于车企,这一级玩家为行业“一级供应商”。

1.1. 大三电:电机、电控、减速器

1.1.1. 电机:扁线电机、高压电机带来新机遇

电驱动系统在新能源 汽车 成本中占比仅次于电池。电驱动系统(电机、电控、减速器)是新能源 汽车 动力总成的关键部件,相当于传统燃油车发动机的作用,直接决定整车的动力性能。其成本占比仅次电池,占比绝对值因新能源 汽车 品牌、车型而异。

驱动电机主要技术路径聚焦在永磁同步电机&交流异步电机上。永磁同步电机与交流异步电机的主要区别点在于转子结构,永磁同步电机会在转子上放置永磁体,由磁体产生磁场;而交流异步电机则是由定子绕组通电产生旋转磁场。功率密度、效率(高效率区间)是衡量电机性能的关键指标:

1)功率密度越大代表着相同功率下的电机体积更小,有利于节省空间&制造成本;

2)效率越高,说明电机端损耗越小,相同电池容量下,新能源车续航里程更长。

永磁同步电机为目前应用最多的电机类型,异步电机在高端车型双电机配置下会有部分使用。相比交流异步电机,永磁同步电机功率密度更高、高效区间更宽、质量更轻。

根据第一电动 汽车 网统计信息,2022 年 3 月,我国新能源 汽车 共配套驱动电机 50.97 万台,其中永磁同步电机为 48.60 万台,占比 95%,适用于大部分主流车型;交流异步电机配套 2.09 万台,占比为 4%,主要配套包括特斯拉 Model Y、岚图 FREE、蔚来 ES8、奥迪 e-tron、大众 ID.4 CROZZ 等车型。交流异步电机在高速中应用性能更优,同时具有成本优势(稀土永磁材料成本较高,同功率的永磁同步电机价格更高),目前配套多以高端车型、双电机方案为主 (蔚来 ES8 是前永磁同步+后交流异步,特斯拉 Model Y 2021款采用前感应异步+后永磁同步)。

多电机在高端车型中应用有所增加,故单车配套电机数也随高端市场占比而变化。

相比单电机,双电机可以显著提高 汽车 的加速性能与续航能力。同时,双电机多意味着四驱系统,可以提供更好的附着力,从而提高安全性能。近年来,在高端车型中双电机的应用不断增加,特斯拉、蔚来、奥迪、大众、奔驰都陆续推出搭载双电机的车型。而在法拉第 FF91 和荣威 MarvelX 中更是使用了三个电机。

扁线:可有效提高电机功率密度,减少铜损耗以提升效率。

1)功率密度高:相较于传统的圆线绕组电机,扁线电机将圆形导线换成矩形导线,因此相同面积的定子线槽可以塞进更多面积的导线,进而提高功率密度。

2)效率高、损耗小:铜损耗在电机损耗里占比达 65%,因此为提高电机效率,需采用更合理的定子绕组,从而降低铜耗。此外,扁线截面更粗使得电阻相对更小,铜导线发热损失的能量也越小。而且扁线电机的端部尺寸短 5-10mm,从而降低端部绕组铜损耗。

3)重量、NVH 等方面也存在优势。

发卡电机为应用最广泛的扁线技术,产线投资高,产业化仍处于前期阶段。根据线圈绕组方式差异,扁线电机可分为集中绕组扁线电机、波绕组扁线电机与 Hairpin(发卡)扁线电机,其中发卡电机应用最为广泛。相对圆线电机,扁线电机无法进行手工制造、自动化要求较高——绕组制造过程非常复杂,需要先将导线,制作成发卡的形状,然后通过自动化插入到定子铁芯槽内,然后进行端部扭头和焊接。高自动化及定制化使得扁线电机产线投入较高,根据方正电机,2021 年来公司已先后投资 17.42 亿元用于产线建设,对企业资金实力有较大挑战。

雪佛兰和丰田开启扁线电机应用先河,近年来渗透率不断提升。2007 年,雪佛兰VLOT 采用的电动 汽车 中就有发卡式扁线电机,其供应商为雷米。2015 年,丰田发行了装载扁线电机的第四代普锐斯,其电机供应商为 Denso。在扁线电机更高的效率加成下及内外资电机厂商批量化工艺的成熟,近年来其应用不断增加,2020 年来,保时捷、比亚迪、特斯拉等车企纷纷推出装载发卡式电机的新车型,渗透率不断增长。根据方正电机公司年报,2020 年全球新能源 汽车 行业扁线电机渗透率为 15%,我国扁线电机渗透率约为 10%。2021 年随着各主流车企大规模换装扁线电机,特斯拉换装国产扁线电机,我国扁线电机渗透率已与全球扁线电机渗透率同步增长至 25%。

此外,在高端车型中,搭载扁线电机数量也开始从原来的单电机增加到双电机。例如,保时捷首款纯电动跑车 Taycan 便采用了三电机。

高压:缩短充电时间、提高电机效率以延长里程的重要措施。纯电乘用车电压通常在 200-400V 之间,在同等功率下,当电压从 400V 提升到 800V 后,线路中通过的电流减少一半,产生的功率损耗更小,从而可以提高充电效率、缩短充电时长,进而改善新能源 汽车 使用体验。同时,工作电流的减少将降低功率损耗,继而可以进一步降低同样行驶里程中的电量消耗,从而延长 汽车 里程数。2021 年为我国 800V 高压快充元年,行业发展有望加速。

2021 年来,比亚迪(e 平台)、理想、小鹏、广汽(埃安)、吉利(极氪 001)、北汽(极狐)等车企纷纷布局 800V 快充技术,我国 800V 高压快充行业进入发展加速期。

高压化下对 汽车 电子各环节都将带来新挑战,目前应用仅停留在高端车型。新能源 汽车 要实现 800V 及以上高压平台兼容,除了需要提高电机、电池性能外,PTC、空调、OBC、高压线束等部件都需要重新适配,此外还面临更高电压带来的安全、热管理、成本等多方面挑战。受以上因素影响,目前 800V 高压平台应用还仅停留在部分高端车型。

油冷:采取合理的电机热管理设计可以进一步提升功率密度。电机的功率极限能力往往受限于电机温升极限,因此提高电机冷却散热能力可以快速提高功率密度,同时防止永磁体在高温时发生不可逆的“退磁”。目前常用的冷却方式为水冷,但其无法直接冷却热源,热量传递路径长、散热效率低;相较于水冷,油冷的优势在于油品具有不导电、不导磁、绝缘等性能,因此可以直接接触热源,形成更安全的热交换,提高散热效率。

故相同的绕组绝缘等级下,油冷电机可以承受更高的绕组电流,长期工作功率更高。

1.1.2. 电机控制器:IGBT 掣肘,单管并联纾困

电控系统通过电机控制算法发出信号驱动电机转动,进而控制整个车辆的动力输出。电控系统可分为主控制器和辅助控制器:

1)主控制器控制 汽车 的驱动电机;

2)辅助控制器控制 汽车 的转向电机、制动器、空调等。

我们本文重点讨论的电控系统主要指主控制器,主要由控制板(接受整车控制器的信号指令,运行电机控制算法,发出控制指令给功率板)、功率板(接受控制板指令,频繁通断 IGBT/MOSFET,控制电机转动)、壳体等组成,在控制器中,控制电路板、功率电路板成本主要在于 IGBT(绝缘栅双极型晶体管)、MOSFET(功率场效应晶体管)、MCU(微控制器)、电源芯片等半导体器件。

电控开发需要从硬件、软件两方面协同进步。类似电机,电机控制器的核心指标同样为功率密度、效率,软硬件的优化也是围绕这两大核心主题展开。

1)硬件角度,功率半导体单管并联方案将具备高性价比优势,或成 A 级以下车型主流硬件配置;而模组方案凭借更高可靠性,在中高端车型占据核心地位。器件方面,碳化硅有望逐步渗透。

2)软件角度,需要在可拓展性、易维护性、功能安全性等方面的不断提高。

功率半导体 IGBT 占电控成本比重较高,主要参与者为国外功率半导体巨头。根据盖世 汽车 数据,2017 年功率板的核心器件 IGBT 模块,占到电控总成本高达 37%。根据Yole,2020 年全球 IGBT 行业销售额 TOP15 公司中共 14 家为国外企业,而英飞凌(Infineon)更是凭借 14.33 亿美元的收入连续多年稳居全球第一。

功率半导体在新能源 汽车 中的应用可分为模组&单管并联这两种路线,两者有各自适用的场景。模组为高度集成的功率半导体产品,保证了电控成品的可靠性&良率高,同时降低了系统设计的复杂度。以 IGBT 为例,由于车规级功率半导体主要被英飞凌等外资占据,其往往提供特定参数规格的标准 IGBT 模组,然而模组参数往往不能很好适配具体需求,因此标准模组在不同功率的驱动电机控制系统中容易出现容量受限、结构安装等问题。若采用多个 IGBT 单管并联(通过复合母排、冷却装置等部件一同封装),则可以根据不同车型灵活设计冗余量,并且单管成本显著低于模块,在成本要求较高的A 级以下车型使用得更为普遍。但多个 IGBT 单管并联时,由于各单管参数的分散性、输出电流的不一致性,可能使系统可靠性较差,整个 IGBT 模组寿命也会缩短,对企业技术、制造能力考验大,故中高端 B 级以上车型通常使用可靠性更强的模组路线。

碳化硅功率器件可显著提高电控效率、功率密度等性能。碳化硅材料具有禁带宽度大、热导率高、电子饱和迁移速率高等性质,相比硅基 IGBT,碳化硅元器件体积更小、频率更高、开关损耗更小,可以使电驱动系统在高压、高温下保持高速稳定运行(硅基IGBT 只能在 200 以下的环境中工作)。根据意法半导体,在 400V 电压平台下,相较于硅基 IGBT,碳化硅功率件有 2-4%的效率提升;在 750V 电压平台下,碳化硅器件有3.5-8%的效率提升。

越来越多的高端车型已采用碳化硅电控。

1)车企角度,2021 年奥迪 e-tron GT 与福特 Mach E、特斯拉 Model S 等新车型也纷纷采用了碳化硅器件。2021 年 10 月,通用 汽车 与 Wolfspeed 签订了碳化硅供应协议,在原材料上抢先布局。国内车企也不断布局碳化硅,比亚迪发布了碳化硅车系平台 e-Platform 3.0,小鹏 G9、蔚来 ET7 等采用碳化硅电控的车型也有望在 2022 年交付。

2)供应商角度,根据精进电动招股说明书,公司采用全 SiC 模块,可以使控制器的功率提高 20kW 同时使其重量减少 6kg,逆变器尺寸缩小 43%。根据英搏尔,碳化硅电机控制器的损耗下降了 5%,电驱动系统整体 NEDC 平均效率提升 3.6%,整车 NEDC 续航提升 30km、增幅达 5.8%。

除了电机控制器外,碳化硅器件在 OBC、DC/DC、无线充电等“小三电”中也有应用。例如,欣锐 科技 早于 2013 年正式将 Wolfspeed 的碳化硅方案应用于 OBC 产品,2021 年为比亚迪 DMi 车型提供碳化硅电源类产品。目前制约碳化硅器件应用的主要因素为成本,伴随着未来碳化硅产业链的发展完善,相关器件应用渗透率将稳步提升。

软件:电控的进步体现在可拓展性、易维护性、功能安全性等方面的不断提高。

1)可拓展性:电控软件开发通常会使用 AUTOSAR 工具链(B 级及以上车把 AUTOSAR 作为“标配”)。AUTOSAR(AUTOmotive Open System Architecture, 汽车 开放系统架构)是由全球各大 汽车 整车厂、汽零供应商、 汽车 电子软件系统公司联合建立的一套标准协议,旨在有效地管理日趋复杂的 汽车 电子软件系统。AUTOSAR 规范的运用使得不同结构的电子控制单元的接口特征标准化、模块化,应用软件具备更好的可扩展性、可移植性,缩短开发周期。


2)易维护性:是指在软件后续使用过程中,及时实现远程更新升级与性能优化。OTA(Over-the-Air)技术可以降低维护成本,创造新的收入来源,目前已经在 汽车 行业包括其控制器总成上持续推广。3)安全性,电驱动系统的控制器总成对新能源 汽车 的动力输出进行直接的调节控制,是保证安全性的重要一环。在 汽车 行业逐步引入 ISO26262 标准之后,基于功能安全的车用软件开发对电控软件提出了新的要求。

1.1.3. 减速器:单档路线为主,两档减速可以期待

电机高速化趋势明显,带动减速器向两档减速方向发展。减速器是影响电驱动系统整体 NVH 性能的关键。按照传动等级分类,减速器可以分为单级减速器、两档减速器以及两档以上减速器。在电机高速化的趋势下,减速器正在经历从单级到多档的产品演变过程。目前,丰田普锐斯和特斯拉 Model 3 电机转速均已达到了 17900rpm,国内车企转速略低,但基本也都达到了 16000rpm,下一步规划便是 18000-20000rpm,电机高速化性能的提升需要相应的高性能减速器来配套。

单级减速器结构简单、成本较低、体积小,因此目前仍为主流应用。但在高转速区间,单档减速器由于传动比单一,在最高或最低车速以及低负荷条件下,电驱动效率会下降,浪费电能而减少行驶里程,此外减速器高转速时会带来 NVH 等问题。

两档减速器在混动车中率先应用,纯电动车应用可以期待。相较于单档减速器,两档减速器一方面使驱动电机在更高效的区域运行,从而提升驱动系统效率。另一方面,采用两档减速器后,传动比可以做到更高, 汽车 动力性随之增加、减少百公里加速时间。

此外,采用两个档位后,驱动电机可以更加小型化、低速化,从而降低电机及电控的成本。目前,采埃孚、GKN、麦格纳、Taycan 等企业均已推出两档减速器产品。

1.2. 小三电:OBC、DC/DC、PDU

“小三电”是 OBC、DC/DC、PDU 三大类电源产品,三者一同搭建了 汽车 内部的“能源网络”。OBC(充电机)负责将来自电网的交流电转换成直流电给电池充电; 汽车 电气电子系统中,不同部件需要的电压等级不尽相同,故需要 DC/DC(直流-直流变换器)转换电压;PDU(高压配电盒)负责内部“电气能源网架”的互联互通。

半导体器件成本占比较高,部分仍依赖进口。根据威迈斯招股说明书,在电源产品中,半导体器件、电容电阻为主要成本构成,占比分别为 23%和 16%。而由于半导体器件与部分电容产品国产化水平较低,多数公司仍采用外资供应商为主。例如,威迈斯主要供应商为 TI、英飞凌、意法半导体、贵弥功等,2016-2018 年公司进口原材料金额占比分别为 22.30%、19.96%、28.71%,其中 IGBT、MOSFET 海外主要供货商英飞凌占比最高,2016-2018 年采购金额占比分别为 3.18%、6.61%、7.28%。

技术持续演进,集成化趋势同样显著,软硬件能力都将迎来考验。早期车载电源产品主要采用模拟控制技术,产品功能较为单一,配套的软件只具备检测功能,不能实现精准控制。之后车载电源产品向数字化技术转变,能够实现复杂的控制算法,实现输出参数的灵活调整和精准控制,提高了软件系统的操控性,包括车载电源的诊断、升级和参数调整等应用需求。下一代车载电源产品将向集成化转变,在硬件、软件、体积、重量四个维度实现创新突破。硬件上有望将进一步采用更高性能的碳化硅器件;软件上将开发过程转换为模型化编程及满足 AUTOSAR 的接口方式,提升软件稳定性和灵活性;在体积和重量上实现小型化、轻量化。

1.3. 集成化:1+1+1 3,深度集成方兴未艾

1+1+1>3,电驱动由最初“结构集成”向“深度系统集成”演进,集成化“多合一”总成产品成为主流趋势。以往动力系统的电机、电控、电源多单独采购,根据其电气、机械结构进行集成组装;随着新能源 汽车 零部件要求不断提高,“多合一”总成产品通过巧妙设计将电机、电控、减速器、电源“深度集成”,减少彼此间的连接器、冷却组件、高压线束等部件。“多合一”集成式系统相比分体式产品的优势主要体现在以下方面:

1)性能更优:降低了各部件之间连接部位的效率损耗,提高整车的 NVH 性能,从而提高了集成系统的可靠性;

2)成本更低:集成式电驱动系统可以减少车内部的高压线束、连接器数量,节约线束与连接器成本,从而使集成式系统更具有经济性。

3)更省空间:集成式产品体积更小、重量更轻,有利于节省车内空间。

集成化电驱动系统渗透率不断提升。根据 NE 时代新能源,2020 年/2022 年 1-4 月我国新能源乘用车“三合一”电驱动系统搭载量为 50.27/79.26 万台,渗透率为44.91%/61.63%,目前基本涵盖大部分 A 级车、B 级以上车型。

现有集成产品以“三合一”为主,集成度更高的“多合一”新产品也在不断问世。

根据 NE 时代新能源,2022 年 1-4 月新能源乘用车搭载的电驱动系统中,分体式、电机/电控“二合一”合计占比为 44%,“三合一”占比为 52%,“多合一”占比为 4%。同时,OBC、DC-DC、PDU 等充配电系统集成产品应用也不断增加,结合电驱系统集成产品将形成集成度更高的多合一平台。

华为 DriveOne“七合一”电驱动系统打造多合一集成新标杆,比亚迪和上汽变速器也陆续推出多合一产品。

1)华为七合一系统集成了 MCU、电机。减速器、DC-DC、 OBC、PDU、BCU 七大部件,具有开发简单、适配简单、布置简单、演进简单等优势。

相较于“三合一”,该产品体积减少 20%、重量减轻 15%。此外,华为 DriveOne 系统可实现 7dB 的超静音,并具有 80%NEDC 效率,提升整车驾驶体验。根据 NE 时代新能源,华为“三合一”电驱动总成已在长安 CS-GXNEV 和赛力斯 SF5 两款车型中得到应用,但目前其七合一产品还没有在整车中的应用案例。

2)比亚迪“海豚”八合一系统即成立VCU、BCU、PDU、DC-DC、OBC、MCU、电机、减速器八大部件;

3)上汽变速器&威迈斯的七合一系统集成电机、电控、减速器、OBC、DC-DC、PDU、BCU 七大部件。

1.4. 总结:千亿空间市场广阔,技术变革推动天花板不断打开

据前文所述,新能源 汽车 电驱动、电源系统围绕“高效率区间、高功率密度”等核心性能,其技术迭代仍在演进,而且针对不同车企、不同车型大多需要“量身定制”。

截至 2022 年 4 月,国内电动车销量结构成“纺锤形”——B 级和 A00 级车型销量占比较高。分车型来看电驱动技术,1)A/B 级及以上中高端车型通常因价格较高、可降本空间大,性能要求高,故对“三合一”乃至“六合一/七合一”等更青睐,扁线、碳化硅有 望率先在中高端车型进行渗透。2)A00/A0 级的低端车型对成本要求更高,故倾向于采 购分体式产品,部分也会采用成本低的“三合一”。即使对同一级别车型,不同车企及电动化平台均有各自技术架构,需要电驱动企业去配合设计,故当前定制化水平仍较高。

1)技术变革带动需求结构变化:在电机技术方向上,扁线电机渗透率有望在未来5 年快速提升,我们假设 2025 年在电驱三合一市场的综合渗透率将达到 87%;在单车配套电机数量上,双电机目前仍主要应用于高端车型,我们假设 2025 年双电机在电驱三合一市场综合渗透率将达到 5%。在电控方向,由于碳化硅性能优势较强,近年应用增长较快,考虑其降本速度,我们假设碳化硅电控渗透率稳步提升、2025 年在电驱三合一市场综合渗透率达到 26%。

2)规模化带动价格下降:电机方面,扁线电机厂家近年产能扩展迅猛,我们预计规模化将带动价格快速下降,同时随着扁线电机渗透率提升,与圆线电机价格差异持续缩小,经济性更为突出;电控方面,碳化硅同样持续降本。

3)集成化占比提高:我们将电驱动&电源市场分为分布式、二合一、三合一(含少量“多合一”),我们假设“三合一”渗透率不断提升、2025 年达到 59%(基本覆盖 A 级及以上的车型)

行业参与者可分为“三大阵营”:整车厂自供体系、动力系统集成商、第三方电驱动供应商。

1)整车厂自供体系(in-house):出于供应链安全、成本控制等考虑,整车厂多设立子公司或合资公司自供电驱动、电源产品,代表公司有特斯拉、比亚迪旗下的弗迪动力、蔚来旗下的蔚然动力、长城旗下的蜂巢能源等。

2)动力系统集成商(Tier1):通常为海外 汽车 零部件巨头,如联合电子、日电产、博世、大陆、博格华纳等,凭借深厚的技术、工艺等积淀拓展至新能源 汽车 领域,本身产品力强、产能规模大,且具备全球主流车企客户资源。

3)第三方电驱动供应商:近年来快速崛起,独立第三方根据业务侧重点可以分为电控为主、电机为主的厂商,但是在集成化的趋势下,企业通常会同时布局电机、电控、电源与“多合一”系统。根据公司业务结构差异,又可分为以下几类:

1) 整车厂自制 VS 向第三方外采:

我们认为,未来 5-10 年仍将是自主品牌与新势力车企崛起的机遇期。一方面由于新能源 汽车 更新换代速度要高于传统燃油车,相比外资品牌,自主品牌的“包袱”更小,能够更加快速地进行变革。另一方面,新能源 汽车 扎根本土,对消费者需求有更深刻的认知,可以敏锐捕捉到消费者需求变化并快速响应。

上述核心车企采购逻辑(自制 or 开放供应链)影响了第三方可触及的市场空间。

对于前述的“中高端、中端、中低端”市场,车企通常有各自的采购偏好:

2021 年/2025 年第三方供应商总体销量份额为 40%/60%。整车厂前期因新能车出货量相对不大,部分车企选择自制电驱动/电源系统,但后期随新能源车年销量过百万辆、车型品类丰富等,对自制体系的成本控制能力、快速研发能力、产能等都提出较大挑战。届时,我们预计第三方凭借技术平台完备,以标准化促定制化开发,叠加定点车型销量较大,规模效应强劲,在成本、开发速度、产能方面均具备更强竞争优势。不同于燃油车,电池、电驱作为新能源 汽车 中最重要的板块,如果全部外包给第三方供应商,那么留给车企的参与环节将大幅减少,这将不断降低产业壁垒,缩小盈利空间,因此从整车厂的经营战略来考虑,部分车企未来仍会坚持“部分自供”。综上,我们预计多数整车厂在性能要求苛刻的中高端平台(B 级及以上)部分采用自供体系、部分外供,中端、中低端市场的车型开放供应链给第三方。结合上一节不同品牌车的销量占比数据,我们测算 2021 年第三方供应商总体销量份额约 39.96%,至 2025 年份额有望提升至 60.38%。

2) 第三方供应商竞争焦点(第三方 VS 第三方):

国内主流厂家在技术上和海外 Tier1 的差异在逐步缩小。海外 Tier1 在传统车零部件研发生产上走在世界前列,但是近年来我国电驱动供应商在技术上不断实现突破,与国外先进水平差距逐步缩小,核心性能基本与海外 Tier1 相差不大,在新技术路线的布局方面也处于同一起跑线甚至领先一步。

高压化(基于碳化硅的电驱动产品):在电机方面,方正电机基于 800V 碳化硅平台的驱动电机目前已完成客户项目定点,有望于 2022Q3 量产。在电控方面,日立为保时捷 Taycna 提供了基于 Si-IGBT 技术的 800V 的逆变器。在电驱动总成方面,汇川技术、臻驱 科技 、中车时代等都已推出了应用碳化硅的驱动集成产品,其中汇川的第四代动力总成已在小鹏 800V 高压平台车型中实现量产。

扁线电机:方正电机、大洋电机、华域电动等生产的扁线电机均已得到应用,例如方正电机产品已量产配套蔚来 ET7,大洋电机已量产配套北汽 48V BSG。

『捌』 什么是新能源汽车驱动电机

【太平洋汽车网】所谓电机,就是将电能与机械能相互转换的一种电力元器件。当电能被转换成机械能时,电机表现出电动机的工作特性;当机械能被转换成电能时,电机表现出发电机的工作特性。大部分电动汽车在刹车制动的状态下,机械能将被转化成电能,通过发电机来给电池回馈充电。

展开全文近年来,伴随着行业的发展,新能源汽车逐渐被广泛使用,各大厂商也推出了自家的明星产品。电机作为电动汽车最重要的部件之一,各大厂商纷纷选择合宜的电机,运用在自家的产品上。而到底不同的电机有什么差别?又各自被运用到哪些车型上去了?

电动机的发展状态及分类电动汽车经常采用的驱动电机有直流电机、异步电机、永磁同步电机和开关磁阻电机四类。最早应用于电动汽车的是直流电机,这种电机的特点是控制性能好、成本低。随着电子技术、机械制造技术和自动控制技术的发展,异步电机、永磁同步电机和开关磁阻电机表现出比直流电机更加优越的性能,这些类型的电机正在逐步取代直流电机。

下表是电动汽车常用的四种驱动电机性能比较:

★直流电动机优点:成本低、易控制、调速性能良好缺点:结构复杂、转速低、体积大、维护频繁特性:在电动汽车发展早期,直流电机被作为驱动电机广泛应用,但是由于其结构复杂,导致它的瞬时过载能力和电机转速的提高受到限制,长时间工作会产生损耗,增加维护成本。

此外,电动机运转时电刷冒出的火花使转子发热,会造成高频电磁干扰,影响整车其他电器性能。因此,目前电动汽车行业已经基本将直流电动机淘汰。

应用代表车型:早期部分车型:

■小结:基本上处于淘汰阶段,应用车型都是早期上市车型。

★永磁同步电机优点:效率高、结构简单、体积小、重量轻缺点:成本较高、高温下磁性衰退特性:所谓永磁,是指在制造电机转子时加入永磁体,使电机的性能得到进一步提升。而所谓同步,则指的是转子的转速与定子绕组的电流频率始终保持一致。因此,通过控制电机的定子绕组输入电流频率,电动汽车的车速将最终被控制。

与其他类型的电机相比较,永磁同步电机最大优点就是具有较高的功率密度与转矩密度,说白了,就是相比于其他种类的电机,在相同质量与体积下,永磁同步电机能够为新能源汽车提供最大的动力输出与加速度。这也是在对空间与自重要求极高的新能源汽车行业,永磁同步电机成为首选的主要原因。

(图/文/摄:太平洋汽车网问答叫兽)

『玖』 新能源汽车驱动电机的作用

【太平洋汽车网】驱动电机既可以将电能转换为机械能驱动汽车行驶,也可以作为发电机将机械能转换为电能,并存储在动力电池内。电机控制器将动力电池的高压直流电变换为驱动电机的高压三相交流电,使轮掘驱动电机产生力矩,并通过传动装置将驱动电机的旋转运动传递给车轮,驱动汽车行驶。

驱动电机已经自主开发出满足各类新能源汽车的产品,部分主要性能指标已达到国际先进水平,但是在峰值转速、功率密度及效率方面与国外仍存在一定的差距。峰值转速是电机的重要指标,也是目前国内电机较之国外差距最明显的指标。国内绝大部分永磁同步电机的峰值转速在10000rpm以下,而国外基本在10000rpm以上。国内电机在功率方面基本能够达到国际水平,但是在同功率条件下存在重量劣势,因此功率密度存在较大差距。国内的永磁同步电机功率密度多在(1~2)kw/kg区间内,与2020年3.5kw/kg的目标值存在较大差距。在电机效率方面,国内电机的最高效率均达到94%~96%,已达到西门子、博世等企业的水平,但是在高效区方面,如系统效率大于80%的区域占比方面尚存在一定差距。电机的高效区占比集中在70%~75%,而国外电机基本达到80%。另外,电机的冷却方式已经从自然冷却逐步发展为水冷,国内电机采用水冷为主,国外先进的电机已经发展到油冷电机。

《节能与新能源汽车技术路线图》分析,驱动电机主要发展趋势有以下几个方面:集成化--与整车的电子控制器的集成和机电耦合的集成;高效化--提高功率密度并降低成本;智能化--与整车传感器、控制器配合不断提升驱动系统的性能。

1.2驱动电机的主要分类驱动电机历史悠久,在1885年被美国的尼古拉·特斯拉申请了感应电动机专利,之后不断衍生出各式各样的电动机,被各行各业所广泛使用。下面,按照驱动电机的电源对其进行分类:图1从图1可见,电机的竖族种类繁多,每个电机都有特点。结合市场,简单比较主流驱动电机的性能,如下表:表1上表的经验性统计,结合新能源汽车复杂的工况:频繁停车启动、加速减速、负载爬坡、持续高速、低速蠕动等分析,交流异步电机和永磁同步电机在尺寸、质量、功率密度、效率等优势明显,因此逐渐成为新能源汽车的主流选择。

2新能源汽车对驱动电机的性能要求以内燃机和驱动电机为动力的汽车早在19世纪就开始了较量,腊纤核经过不断的发展优化、竞争,电动车因充电慢,续航短等劣势成为小众车型,而内燃机最终以其稳定、可靠、加油方便等优势称霸全球。

(图/文/摄:太平洋汽车网问答叫兽)

『拾』 新能源汽车选用电机有何要求

1、电动汽车对于驱动电机的要求

目前电动汽车主要有三个性能指标:

(1)最大行驶里程(km):电动汽车在电池充满电后的最大行驶里程;

(2)加速能力(s):电动汽车从静止加速到一定的时速所需要的最小时间;

(3)最高时速(km/h):电动汽车所能达到的最高时速。
在美国某机场运营的纯电动客车

大家都知道,电机分很多种。单工业电机就有很多。但是作为电动汽车的驱动电机,其诞生之初就有着独特的性能要求:

(1)适用汽车各种工况:频繁的启动/停车、加速/减速,这就要求电动汽车的驱动电机满足转矩控制的动态性能要高。

(2)为了减少整车的重量,通常取消多级变速器,这就要求在低速或爬坡时,电机可以提供较高的转矩,通常来说要能够承受4-5倍的过载;

(3)驱动电机调速性能要好:要求调速范围尽量大,同时在整个调速范围内还需要保持较高的运行效率;

(4)电机设计时尽量设计为高额定转速,同时尽量采用铝合金外壳,高速电机体积小,有利于减少电动汽车的重量;

(5)电动汽车应具有最优化的能量利用,具有制动能量回收功能,再生制动回收的能量一般要达到总能量的10%-20%;

(6)可靠性好:鉴于电动汽车所使用的电机工作环境更加复杂、恶劣,因此,可靠性必须要高。同时还要保证电机生产的成本不能过高。

2、几种常用的驱动电机

2.1直流电动机
直流电动机

在电动汽车发展的早期,大部分的电动汽车都采用直流电动机作为驱动电机,这类电机技术较为成熟,有着控制方式容易,调速优良的特点,曾经在调速电动机领域内有着最为广泛的应用。

但是由于直流电动机有着复杂的机械结构,例如:电刷和机械换向器等,导致它的瞬时过载能力和电机转速的进一步提高受到限制,而且在长时间工作的情况下,电机的机械结构会产生损耗,提高了维护成本。

此外,电动机运转时电刷冒出的火花使转子发热,浪费能量,散热困难,也会造成高频电磁干扰,影响整车性能。由于直流电动机有着以上缺点,目前的电动汽车已经基本将直流电机淘汰。

2.2交流异步电动机

交流异步电动机

交流异步电机是目前工业中应用十分广泛的一类电机,其特点是定、转子由硅钢片叠压而成,两端用铝盖封装,定、转子之间没有相互接触的机械部件,结构简单,运行可靠耐用,维修方便。交流异步电机与同功率的直流电动机相比效率更高,质量约轻了二分之一左右。

如果采用矢量控制的控制方式,可以获得与直流电机相媲美的可控性和更宽的调速范围。由于有着效率高、比功率较大、适合于高速运转等优势,交流异步机是目前大功率电动汽车上应用最广的电机。

热点内容
雷锋号商务车电话号 发布:2024-11-17 22:26:46 浏览:659
大型房车分布图 发布:2024-11-17 21:49:14 浏览:470
国5微型货车价格及图片及价格表 发布:2024-11-17 21:41:38 浏览:460
豪哥旌航房车593 发布:2024-11-17 21:24:31 浏览:841
小松pc70新车价格 发布:2024-11-17 21:19:42 浏览:175
房车铝合金爬梯 发布:2024-11-17 21:18:35 浏览:800
中联重科200吨吊车价格 发布:2024-11-17 20:56:34 浏览:818
日系皮卡车长宽 发布:2024-11-17 20:32:59 浏览:175
长安车商务车多少钱 发布:2024-11-17 20:26:17 浏览:219
漆黑的魅影bw皮卡丘 发布:2024-11-17 20:22:05 浏览:896