电动汽车菊花链
① 电动车电池管理系统对外通信常用的方式有哪些
硬件的设计和具体选型要结合整车及电池系统的功能需求,通用的功能主要包括采集功能(如电压、电流、温度采集)、充电口检测(CC和CC2)和充电唤醒(CP和A+)、继电器控制及状态诊断、绝缘检测、高压互锁、碰撞检测、CAN通讯及数据存储等要求。
2、架构
BMS硬件架构分为分布式和集中式:
(1)分布式包括主板和从板,可能一个电池模组配备一个从板,这样的设计缺点是如果电池模组的单体数量少于12个会造成采样通道浪费(一般采样芯片有12个通道),或者2-3个从板采集所有电池模组,这种结构一块从板中具有多个采样芯片,优点是通道利用率较高,节省成本;
(2)集中式是将所有的电气部件集中到一块大的板子中,采样芯片通道利用最高且采样芯片与主芯片之间可以采用菊花链通讯,电路设计相对简单,产品成本大为降低,只是所有的采集线束都会连接到主板上,对BMS的安全性提出更大挑战,并且菊花链通讯稳定性方面也可能存在问题
② 汽车上的BMS是什么
bms系统指电池管理系统(英语:Battery Management System)是对电池进行管理的系统,BMS主要就是为了智能化管理及维护各个电池单元,防止电池出现过充和过放,延长电池的使用寿命,监控电池的状态。
BMS是电动汽车电池管理系统是连接车载动力电池和电动汽车的重要纽带。BMS实时采集、处理、存储电池组运行过程中的重要信息,与外部设备如整车控制器交换信息,解决锂电池系统中安全性、可用性、易用性、使用寿命等关键问题。
主要作用是为了能够提高电池的利用率,防止电池出现过度充电和过度放电,延长电池的使用寿命,监控电池的状态。通俗的讲,就是一套管理、控制、使用电池组的系统。(2)电动汽车菊花链扩展阅读:
BMS最核心的三大功能为电芯监控、荷电状态(SOC)估算以及单体电池均衡。
1、电芯监控。
电芯监控技术的主要功能有单体电池电压采集;单体电池温度采集;电池组电流检测。温度的准确测量对于电池组工作状态也相当重要,包括单个电池的温度测量和电池组散热液体温度监测。
这需要合理设置好温度传感器的位置和使用个数,与BMS控制模块形成良好的配合。电池组散热液体温度的监控重点在于入口和出口出的流体温度,其监测精度的选择与单体电池类似。
2、SOC技术
单电芯SOC计算是BMS中的重点和难点,SOC是BMS中最重要的参数,因为其它一切都是以SOC为基础的,所以它的精度和鲁棒性(也叫纠错能力)极其重要。
如果没有精确的SOC,再多的保护功能也无法使BMS正常工作,因为电池会经常处于被保护状态,更无法延长电池的寿命。SOC的估算精度精度越高,对于相同容量的电池,可以使电动车有更高的续航里程。高精度的SOC估算可以使电池组发挥最大的效能。
目前最常采用的计算方法有安时积分法和开路电压标定法,通过建立电池模型和大量的数据采集,将实际数据与计算数据进行比较,这也是各家的技术秘籍,需要长时间大量数据积累,同时也是特斯拉技术含量最高的部分。
3、均衡技术
被动均衡一般采用电阻放热的方式将高容量电池“多出的电量”进行释放,从而达到均衡的目的,电路简单可靠,成本较低,但是电池效率也较低。
主动均衡充电时将多余电量转移至高容量电芯,放电时将多余电量转移至低容量电芯,可提高使用效率,但是成本更高,电路复杂,可靠性低。未来随着电芯的一致性的提高,对被动均衡的需求可能会降低。
③ 电动汽车电池组管理系统的组成
电动汽车的动力输出依靠电池,而电池管理系统BMS(Battery Management System)则是其中的核心,负责控制电池的充电和放电以及实现电池状态估算等功能。通常情况下,BMS主要包括硬件、底层软件和应用层软件三部分,下面就来给大家详细介绍一下。
硬件
1、功能
硬件的设计和具体选型要结合整车及电池系统的功能需求,通用的功能主要包括采集功能(如电压、电流、温度采集)、充电口检测(CC和CC2)和充电唤醒(CP和A+)、继电器控制及状态诊断、绝缘检测、高压互锁、碰撞检测、CAN通讯及数据存储等要求。
2、架构
BMS硬件架构分为分布式和集中式:
(1)分布式包括主板和从板,可能一个电池模组配备一个从板,这样的设计缺点是如果电池模组的单体数量少于12个会造成采样通道浪费(一般采样芯片有12个通道),或者2-3个从板采集所有电池模组,这种结构一块从板中具有多个采样芯片,优点是通道利用率较高,节省成本;
(2)集中式是将所有的电气部件集中到一块大的板子中,采样芯片通道利用最高且采样芯片与主芯片之间可以采用菊花链通讯,电路设计相对简单,产品成本大为降低,只是所有的采集线束都会连接到主板上,对BMS的安全性提出更大挑战,并且菊花链通讯稳定性方面也可能存在问题。
3、通讯方式
采样芯片和主芯片之间信息的传递有CAN通讯和菊花链通讯两种方式,其中CAN通讯最为稳定,但由于需要考虑电源芯片,隔离电路等成本较高,菊花链通讯实际上是SPI通讯,成本很低,稳定性方面相对较差,但是随着对成本控制压力越来越大,很多厂家都在向菊花链的方式转变,一般会采用2条甚至更多菊花链来增强通讯稳定性。
4、结构
BMS硬件包括电源IC、CPU、采样IC、高驱IC、其他IC部件、隔离变压器、RTC、EEPROM和CAN模块等。其中CPU是核心部件,一般用的是英飞凌的TC系列,不同型号功能有所差异,对于AUTOSAR架构的配置也不同。采样IC厂家主要有凌特、美信、德州仪器等,包括采集单体电压、模组温度以及外围配置均衡电路等。
底层软件
按照AUTOSAR架构划分成许多通用功能模块,减少对硬件的依赖,可以实现对不同硬件的配置,而应用层软件变化较小。应用层和底层需要确定好RTE接口,并且从灵活性方面考虑DEM(故障诊断事件管理)、DCM (故障诊断通信管理)、FIM(功能信息管理)和CAN通讯预留接口,由应用层进行配置。
④ 新能源汽车续航是什么意思
新能源汽车续航指的是连续、不停止或不中断的行驶,也可以指可持续行驶的里程数。电动汽车电池管理系统(BMS)对于新能源车来说是重要的一个系统,他是用来连接车载动力电池和电动汽车的重要纽带,也是解决汽车续航能力的核心之一。
向新能源方向靠拢已经成为了汽车行业发展的重要趋势之一。但新能源汽车的续航问题一直被市场所诟病,这也成为了新能源汽车发展的阻力。
就目前市场情况来看,有线 BMS 是目前新能源汽车所采用的主流解决方案。而这些传统的有线 BMS 架构采用基于菊花链配置的线束来连接电池组,其制造工艺繁琐,还需要经常维护,且维修难度高。而无线 BMS 则可以解决上述挑战,因此,目前也有不少半导体厂商在致力于无线 BMS 的开发,德州仪器 ( TI ) 就是其中之一。
据 TI 中国区嵌入式与数字光处理应用技术总监师英介绍,用无线的方案代替有线的方案不仅可以减低制造工艺的难度,还可以降低后续维护的成本。另一方面,有线 BMS 方案的电池包中往往布满了重型铜线,这些铜线会占据电池包内部空间,而采用无线的方式则可以将取代这些重型铜线,并将更多空间留给电芯,这可以提高整个电池包的体积能量密度,从而提高新能源汽车的续航能力。
据其官方资料介绍,通过 CC2662R-Q1 无线 MCU 实现电池管理系统的无线协议,可以提供业界出色的网络可用性 ( 超过 99.999% ) 和 300ms 的网络重启更大可用性。该无线 MCU 可提供高吞吐量和低延迟的专用时隙以防止数据丢失或损坏,同时使多个电池单元能够以 ± 2mV 的精度向主 MCU 发送电压和温度数据,且网络数据包错误率小于 10-7。
据悉,TI 的无线 BMS 功能安全概念采用专为无线 BMS 使用案例开发的新无线协议,解决了通信错误检测和安全问题。借助 CC2662R-Q1 无线 MCU 实现的专有协议,可以在主机系统处理器与新发布的 BQ79616-Q1 电池监控器和平衡器之间进行稳定可靠和可扩展的数据交换。据师英介绍,TI 无线 BMS 已经通过了符合汽车安全完整性等级 ASIL D 认证,以及更高水准的国际标准化组织 ( ISO ) 26262 认证。
(图/文/摄: 问答叫兽) 蔚来ES8 蔚来ES6 问界M5 蔚来EC6 小鹏汽车P7 传祺GS8 @2019
⑤ BMW的第四代PHEV动力电池技术
引言:去年写过一篇文章《24度电起步的BMW PHEV》,最近通过整理BMW的技术资料可以发现从第三代到第四代,BMW做了以下的革新:
1) Gen 4的海外版本,从26Ah的PHEV1的电池升级到34Ah,在5系&7系上面没有改变模组数量,在X5上增加了模组数量
2) 配电盒方面改进了接触器和熔丝等配置,适应更大的电流
3) BMS的通信模式,从CAN通信更换到引入了部分的菊花链通信
01? Gen3到Gen4的主要更改
如前所述,在模组数量没有改变的条件下,电量是从9.2kWh升级到12kWh,其他大部分的参数都没有特别大的变化。
而在内部如前所述,S-box、CMU的设计都有了一些变化。
特别要注意的是这个菊花链设计,升级后等于区分出来了1个主CMU和5个从CMU(之前6个都是采用CAN通信的一摸一样的),折衷的考虑一方面是为了BMU布置的灵活性,也是尽可能保证原有BMU和CMU(主)通信的可靠性,依靠主CMU和从CMU菊花链通信获取所有的单体信息。
注意,如果我们仔细看整体的打开结构,这个电池系统的设计主体是没变的。
02 X5 PHEV电池的设计
通过收集信息,如下图所示我们可以看清楚X5改进版本的,做法是对称的做12个模组,分两个块进行布置,然后采用模组2P的连接方式进行并联使用(最初用在第一代X1 PHEV上的模式)。如下图所示,这是12个模组的布置形式。
为了适应这样的设计,CMU需要翻倍,所以也就出现了12个CMU,一个主CMU(图示中的2)配合11个从CMU(图示中-3)使用菊花链的通信方式,如下图所示。
对比24kWh的做法,BMW和benz一个采用模组2P,一个采取Pack串接之后再并联,方式不一样其实总体的特性差异并不大,大型的SUV做PHEV需要大的动力电池,除了这种采用PHEV电池并联的方式的话,就是理想之后采用的使用BEV电芯的方式来操作。从我个人的判断来看,如果能够在低SOC下调整功率输出,或者在功率一致性上做一点妥协,这种BEV电芯较大电池在PHEV上使用的办法,不失为一种解决问题的思路。
小结:我之前还纳闷,为什么BMW之前一直在谈第五代动力总成技术,它把每一代迭代都算进去了,而主体的设计思路都是基于之前设定的方法往前走。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
⑥ 新能源汽车的BMS是啥
BMS是电池管理系统,对每个电芯及整车电压进行监控,电芯的温度、电压等等进行检测,每节电芯电压超过4.2V时会报警,BMS会自动切断大电,电机电控会停止工作。
⑦ ab543c是什么芯片
ab543c是/BMS芯片单车用量达到12颗,到2025年,其市场规模将达3亿美元。
BMS(Battery management system)应用领域广阔,消费类下游市场是其最主要的应用,如手机、平板、笔记本等。但近几年,电动汽车起势迅猛,高压、高容量密度、快充等特性对BMS提出了更高的要求,也带动单车BMIC(电池管理芯片)需求翻倍增长。
根据财通证券测算,2021年,全球新能源汽车领域BMIC市场规模约2.81亿美元,预计2026年将达到15.13亿美元,CAGR为40.07%,较手机BMIC市场规模的CAGR(1.92%),翻了20倍。
阅读本文,你将了解以下内容:
1. BMS的上车史
2. BMS的芯片成分
3. BMS芯片的玩家们
01
BMS概念与来历
BMS即电池管理系统(Battery management system)。顾名思义是管理电动汽车动力电池的一套系统。BMS扮演着整车电池系统的管家角色,主要功能是采样测量和评估管理,这两大功能由电池控制器单元(BatteryControl Unit,BCU)和电池管理单元(BatteryManagementUnit,BMU)构成。
作为汽车三电系统之一,电池占整车成本的30%-40%左右,因此BMS对整车也是极其重要的一部分。但BMS也并不是电动汽车时代下的产物,它也跟随着电池技术的发展以及应用场景的复杂度不同而变化着。
从铜锌电池到铅酸电池,再到现在的锂电池或钠离子电池,电池技术在近几十年取得了长足的进步。早期的电池如镍镉电池,往往以单体电池的形式出现,所以对电池的状态不需要严加看管。
但到后面,电池以多节串联的形式出现后,问题就来了:每节电池的特性存在差异,电池之间的电量均衡也存在差异。
“两人三足”大家都玩过吧,很考验团队配合能力,总有猪队友步子迈大了,三天两头鼻青脸肿,时间久了,身子垮了,人心散了,还能跑得动吗?
换作电池也是一样,最终结果会导致某节电池经常处于过充或过放的状态,整体电池组的寿命大打折扣,因此人们便手动定期进行检查电池的一致性。
传统意义上的手工活耗时费力并且无法做到实时监控,所以现代意义上的BMS由此诞生。现代BMS功能也是由俭入奢,从早期简单的电压、温度、电流等基本参数监控外,慢慢发展至多个功能如实时监控、电池均衡管理、防过充及过放等。
BMS系统可以划分为硬件、底层软件和应用层软件三大部分,硬件部分包含BMIC、传感器等;底层软件基于汽车开放系统结构(AUTOSAR)将BMS划分为多个区块,实现对不同硬件进行配置;应用层软件主要功能包括充电管理、电池状态估算、均衡控制、故障管理等。
虽然IC占整体动力电池成本的5%左右,但现在电动汽车动力电池讲究高能量密度与高可靠性,如特斯拉采用的18650电池,由7000多节电芯以串联+并联方式构成,如此多数量的电芯之间参数也不尽相同,对BMS更是提出了艰难的要求。
特斯拉Model S依靠一颗TI的电池监控和保护芯片BQ76PL536实现了18650电池的管理,但BMIC可不止这些。
02
BMS里藏着哪些芯片?
在了解BMS芯片之前,我们先来了解下BMS的架构。
BMS拓扑架构分为集中式与分布式。大家一看到集中式是不是认为这是主流?那就错了。
集中式BMS结构紧凑,成本低,但线束多,通道数量有限,一般用于容量低、系统体积小且低压的场景中,比如电动两轮车、机器人、智能家居等。
集中式结构示意图
分布式BMS结构可以理解为主+从的关系,从控单元负责采集电池数据,均衡功能等,主控单元处理数据,判断电池运行情况,进行充电管理、热管理、故障管理等,并且与外部车载控制器等进行实时通信。
分布式结构示意图
电动汽车动力电池向高能量密度、高压及大体积方向发展,在混动和纯电动汽车上主要采用的是分布式BMS架构,如BMW i3/i8/X1、特斯拉Model S/X、比亚迪秦等。虽然控制复杂、成本较高,但胜在灵活性强、线束少。
基于分布式BMS结构,我们将芯片进行分类:
数据采集部分
AFE(模拟前端):AFE泛指电池监测芯片,主要配合各种传感器采集电芯电压、温度等信息,仅具有参数监测功能。此外,AFE一般集成被动均衡技术。这里提一下什么是电池均衡,如前文所述,一般高串数电池组中,每个电池的电压、电量会有所不同,为了保障之间的电量均衡,所以采取主动均衡或被动均衡。
被动均衡通过无源器件将电量多的电芯通过电阻发热消耗掉多余电量,而主动均衡是将多余电量进行转移,实现电芯间的能量流动。被动均衡成本低,可靠性高但增加系统损耗。主动均衡所需元器件较多,成本高,但利于降低系统损耗。
电量计量芯片:采集电池信息,并采用特定算法对电池的SOC(荷电状态,即剩余电量)和SOH(电池健康状态,即老化程度)等参数进行估算,并将结果传送给控制芯片。
控制部分
电池保护芯片:监测电池充放电情况,包括过压、过流、过热等,一旦发现异常情况可以及时切断电路,保护电池系统的安全。目前,部分计量和充电芯片会集成电池保护功能。
充电管理芯片:主要负责充放电管理。根据锂电特性自动进行预充、恒流充电、恒压充电。充电管理芯片使电压、电流达到可控状态,可以有效的控制充电的各个阶段的充电状态,保护电池 过放电、过压、过充、过温,最终有利于电池的寿命延续。
充电管理芯片根据工作模式不同可以分为开关、线性、开关电容。开关型适用于大电流应用,且具灵活性,常用的快充方案都是采用开关型;线性一般应用于小功率充电场景,如便携电子设备;开关电容型充电效率高,但架构受限,一般与开关型搭配使用。
MCU:负责继电器控制、SOC/SOH估算、电池数据收集、存储等。需要满足AEC-Q100、ISO26262等认证。相较于消费级及工规MCU,车规级MCU壁垒更高,对可靠性、一致性、安全性、稳定性有着硬性要求。
通信部分
数字隔离器件:在BMS系统中,SOX(包含SOC、SOH等)算法一般在MCU中执行,因此在AFE与MCU间通常采用数字隔离器件来进行通信。
图为菊花链结构,来源:ADI
目前主流通讯架构为菊花链架构,每个AFE之间互相连接,然后通过一颗隔离通讯芯片连接到MCU,减少了通讯芯片的数量。相对于CAN总线,菊花链架构的优点在于一旦中间断开,后面的AFE芯片仍可以继续通讯。
以下是小鹏BMS采样板、特斯拉Model S采样板和通用Ultium无线BMS中所用到的一些具体芯片信息:
小鹏G3 BMS采样板如下图:
采用AFE+隔离+单片机+CAN的结构,电芯采样部分采用的AFE芯片是ADI LTC6811-1,隔离通讯器件采用的是ADI LTC6820。单片机采用的是NXP S9S12G128F0MLF,SBC芯片采用的是NXP UJA1167,内部集成高速CAN和LDO。
特斯拉Model S采样板如下图:
AFE芯片采用的是TI BQ75PL536A,数字隔离器件采用的是Silicon Labs(芯科科技)SI8642ED,MCU采用的是Silicon Labs C8051F543。
通用无线BMS系统电路板如下图:
目前提供无线BMS解决方案的主要有德州仪器和ADI两家,上图使用的是ADI的方案,由伟世通提供设计和制造。无线BMS系统中,感知单元获取电池基本信息,通过2.4GHz通信传送至控制模块中。
该系统中的核心芯片是ADI ADRF8850和TI TPS3850。ADRF8850是低功耗集成片上系统(SoC)其中包括一个2.4 GHz的ISM频段无线电和一个嵌入式微控制器单元(MCU)子系统。ADRF8850在电池单元监测芯片和电池管理系统(BMS)控制器之间提供无线通信。TPS3850是TI的电源和看门狗芯片。
TI在无线BMS系统中提供的芯片是SimpleLink™ CC2662R-Q1和BQ79616-Q1,前者是无线MCU,后者是电池监控器和均衡器,两者均满足ASIL-D等级。
03
BMS芯片的玩家们
BMIC的研发横跨电、热、化学等多学科,被业内冠以“模拟芯片的皇冠”的称号。
其中AFE的主要供应商有ADI、TI、ST、NXP、瑞萨等,ADI的产品主要来自收购的Linear Technology和美信,瑞萨的产品主要来自收购的Intersil。MCU的主要供应商有NXP、ST、TI、英飞凌等,目前国内也有不少MCU厂商都在积极布局车规级产品,比如兆易创新、芯旺微等。数字隔离器件的主要供应商有TI、ADI、Silicon Labs等。
部分AFE芯片信息 来源:安信证券(截至2022年4月)
国内BMS相关芯片企业如下:
来源:安信证券
整体来看,国产芯片在汽车动力电池领域仍在初步布局阶段,BMIC长期被 TI、ADI等欧美企业垄断。
这其中主要原因在于车规级芯片认证要求严苛,技术门槛高。车规级认证规范包括AEC-Q100、ISO 26262和IATF 16949等。其中,ISO26262是汽车芯片功能安全认证。汽车功能安全从ASIL-A到ASIL-D分为四个等级,A最低,主要用在车身控制等与行驶安全关联度较低的系统中;D最高,主要用发动机等与行驶安全息息相关的系统中。功能安全要求较高,电路和系统设计难度较大,是目前车规芯片验证耗时最长的环节之一。另一方面,模拟器件利润较低,企业投产布局多持谨慎态度。
04
结 语
BMS的下游应用领域主要包括消费电子、汽车动力电池、储能。其中,动力电池是BMS最大的应用领域,2020年份额达到54%。但是汽车动力电池相较于其他应用领域,要求绝对的高可靠性、安全性,因此BMS在汽车领域虽然有更为广阔的市场空间,但也更具有挑战性。
芯片技术是BMS产业链的核心,据财通证券测算,2021年全球新能源车领域 BMIC市场规模约2.81亿美元,预计2026年将达到15.13亿美元,2021-2026年CAGR=40.07%。伴随着新能源汽车的发展,以及车用芯片的持续紧缺,我国BMS芯片需求持续增长,国产替代正当时。
⑧ 新能源汽车续航是什么意思
【太平洋汽车网】新能源汽车续航指的是连续、不停止或不中断的行驶,也可以指可持续行驶的里程数。电动汽车电池管理系统(BMS)对于新能源车来说是重要的一个系统,他是用来连接车载动力电池和电动汽车的重要纽带,也是解决汽车续航能力的核心之一。
向新能源方向靠拢已经成为了汽车行业发展的重要趋势之一。但新能源汽车的续航问题一直被市场所诟病,这也成为了新能源汽车发展的阻力。
就目前市场情况来看,有线BMS是目前新能源汽车所采用的主流解决方案。而这些传统的有线BMS架构采用基于菊花链配置的线束来连接电池组,其制造工艺繁琐,还需要经常维护,且维修难度高。而无线BMS则可以解决上述挑战,因此,目前也有不少半导体厂商在致力于无线BMS的开发,德州仪器(TI)就是其中之一。
据TI中国区嵌入式与数字光处理应用技术总监师英介绍,用无线的方案代替有线的方案不仅可以减低制造工艺的难度,还可以降低后续维护的成本。另一方面,有线BMS方案的电池包中往往布满了重型铜线,这些铜线会占据电池包内部空间,而采用无线的方式则可以将取代这些重型铜线,并将更多空间留给电芯,这可以提高整个电池包的体积能量密度,从而提高新能源汽车的续航能力。
据其官方资料介绍,通过CC2662R-Q1无线MCU实现电池管理系统的无线协议,可以提供业界出色的网络可用性(超过99.999%)和300ms的网络重启更大可用性。该无线MCU可提供高吞吐量和低延迟的专用时隙以防止数据丢失或损坏,同时使多个电池单元能够以±2mV的精度向主MCU发送电压和温度数据,且网络数据包错误率小于10-7。
据悉,TI的无线BMS功能安全概念采用专为无线BMS使用案例开发的新无线协议,解决了通信错误检测和安全问题。借助CC2662R-Q1无线MCU实现的专有协议,可以在主机系统处理器与新发布的BQ79616-Q1电池监控器和平衡器之间进行稳定可靠和可扩展的数据交换。据师英介绍,TI无线BMS已经通过了符合汽车安全完整性等级ASILD认证,以及更高水准的国际标准化组织(ISO)26262认证。
(图/文/摄:太平洋汽车网问答叫兽)