电动汽车冷却原理图
① 冷却系统的工作原理(图解)
冷却系统包括水泵、冷却液、散热器、冷却风扇、节温器、膨胀水箱、发动机缸体和气缸盖中的水套以及其他附加装置。汽车冷却系统的工作原理如下
汽车冷却系统的工作原理
1.冷却水量的调整
冷却水量的调节由恒温器的主阀和旁通阀的打开和关闭自动控制。恒温感应器中的石蜡在76以下为固体,在76以上变成液体。达到86以上,完全变成液体,体积增大。它压缩橡胶管,推动中心推杆,从而改变节温器主阀和旁通阀的开闭状态,达到控制冷却水循环路径的目的。
肺循环
当发动机水温较低时,节温器主阀关闭,旁通阀打开,冷却水在发动机内循环。冷却水的循环路线为:水泵-水套-温控器旁通阀-小循环水管-水泵。
此时冷却水流动路线短,流量小,便于发动机快速升温。
体循环
当发动机水温上升到一定值时,节温器主阀打开,旁通阀关闭,冷却水经过散热器形成大循环。冷却水的循环路线是散热器-水泵-水套节温器主阀-散热器。当冷却水流经散热器时,风扇的强制通风将热量散发到空气中,以确保发动机温度不会过高。此时冷却水流动路线长,流量大,故称大循环。
当恒温器的主阀和旁通阀部分打开时,大循环和小循环同时进行。
2.气流调节
气流由电风扇自动控制。以富康汽车电风扇为例,介绍如下:
(1)当水温为97时,风扇低速运转。当水温降至92时,风扇停止运转。
(2)水温101时,风扇高速运转。
(3)当水温达到118时,水温报警灯亮。
(4)使用空调时,风扇高速运转。
(5)当停机水温超过112时,风机低速运转6分钟,延时冷却。
大多数汽车是由电风扇控制的。热控制开关(双金属热触点继电器)安装在散热器(水箱)的一侧,用于控制风扇电机的旋转。当从散热器流出的冷却液温度高于92时,热控开关的低温触点闭合,风扇电机以2300转/分的低速转动;当冷却液温度上升到99~105时,热控开关的高温开关触点闭合,风扇电机以2800转/分的高速旋转;当冷却液温度降至92~98时,风扇电机将恢复低速旋转。当冷却液温度降至84~9l时,热控开关将切断电源,风扇停止运转。
② 新能源汽车电池冷却系统是什么
汽车新能源汽车动力电池作为汽车的动力源,其充电、放电的发热会一直存在。动力电池的性能和电池温度密切相关。为了尽可能延长动力电池的使用寿命并获得最大功率,需在规定温度范围内使用蓄电池。原则上在-40℃至+55℃范围内,实际电池温度动力电池单元处于可运行状态。因此目前新能源的动力电池单元都装有冷却装置。
动力电池冷却系统有空调循环冷却式、水冷式和风冷式。1.空调循环冷却式
在高端电动汽车中动力电池内部有与空调系统连通的制冷剂循环回路。插电式混动车型动力电池冷却系统如下图所示。
动力电池单元直接通过冷却液进行冷却,冷却液循环回路与制冷剂循环回路通过冷却液制冷剂热交换器即冷却单元连接。因此,空调系统制冷剂循环回路由两个并联支路构成。一个用于冷却车内空间,一个用于冷却动力电池单元。两个支路各有一个膨胀和截止组合阀,两个相互独立的冷却系统图示如下图所示。冷却工作原理:
电动冷却液泵通过冷却液循环回路输送冷却液。只要冷却液的温度低于电池模块,仅利用冷却液的循环流动便可冷却电池模块。冷却液温度上升,不足以使电池模块的温度保持在预期范围内。
因此必须要降低冷却液的温度,需借助冷却液制冷剂热交换器即冷却单元。这是介于动力电池冷却液循环回路与空调系统制冷剂循环回路之间的接口。
如冷却单元上的膨胀和截止组合阀使用电气方式启用并打开,液态制冷剂将流入冷却单元并蒸发。这样可吸收环境空气热量,因此也是一种流经冷却液循环回路的冷却液。电动空调压缩机再次压缩制冷剂并输送至电容器,制冷剂在此重新变为液体状态。因此制冷剂可再次吸收热量。为了确保冷却液通道排出电池模块热量,必须以均匀分布的作用力将冷却通道整个平面压到电池模块上。通过嵌入冷却液通道的弹簧条产生该压紧力。针对电池模块几何形状和下半部分壳体对弹簧条进行了相应调节。
③ 电动车空调系统工作原理图
四.电动空可调压缩机的工作原理
空调制压缩器是空调制系统的电源。空调制系统工作时,压缩机使制冷剂在制冷系统中正常循环,实现制冷。压缩机一旦不能正常工作,空循环系统就不能运行,当然也不能冷却。因此,压缩机就像汽车的发动机和人体的心脏一样,是空调制系统的动力源。下图为BAICEV纯电动汽车空压缩机结构。压缩机及其控制器连接在一起形成一个整体结构。
包括涡旋压缩机的固定涡旋盘和运动涡旋盘。两个啮合涡卷线型相同,安装在一起有180度的偏移,即相角差为180度。
涡旋压缩机的基本结构和工作原理如下图所示。固定涡旋盘固定在机架上,而活动涡旋盘由电机直接驱动。动涡盘不能旋转,只能围绕小回转半径的定涡盘旋转。当驱动电机旋转以驱动可动涡卷旋转时,制冷剂气体通过过滤元件被吸入固定涡卷的外围部分。随着驱动轴的转动,动涡盘按轨迹在定涡盘内运行,使动涡盘与定涡盘之间形成六个从外到内体积逐渐减小的空腔:空腔A、空腔B、空腔C、空腔D、空腔E、空腔f,制冷剂气体在动涡盘和定涡盘组成的六个月牙形压缩腔内逐渐压缩。
涡旋压缩机的基本结构和工作原理
在压缩机的整个工作过程中,各工作腔由外向内,在不同的压缩条件下逐渐缩小,从而保证涡旋压缩机能够连续吸气、压缩和排气。虽然涡旋压缩机每次排出的制冷剂量很少,但其总排量足够大,可以满足车辆空调制冷却的需求,因为其动涡旋可高达9000~13000r/min的转速。当然,压缩机的功耗也很大,达到4~7kW。 @2019
④ 纯电动汽车是怎么取暖和制冷的
普通燃油车暖风热量来自于发动机冷却液,发动机冷却液通过管道在暖风水箱里循环,风机带动气流吹过暖风水箱升温后送入驾驶舱。制冷时发动机驱动空调压缩机,使冷媒在空调系统里循环,在蒸发箱里产生低温,风机带动气流经过蒸发箱,降温后送入驾驶舱。
而纯电动车电池始终是瓶颈,敞开了用不仅影响续航,电池电量低的时候动力性多少也会有影响。而且你还要考虑电池的充放电寿命。这也难怪很多纯电动车不到万不得已坚决不开灯、不开空调、不开暖风。
⑤ 纯电动汽车的空调原理是什么
空调原理:是根据各传感器检测到车内的温度、蒸发器温度、发动机冷却液温度以及其他有关的开关信号等输出控制信号,控制散热器风扇、冷凝器风扇、压缩机离合器、鼓风机电动机及其空气控制电动机的工作状态,实现自动控制车内温度。
详细解释:
汽车空调自动温度控制ATC,俗称恒温空调系统。一旦设定目标温度,ATC系统即自动控制与调整,使车内温度保持在设定值。空调系统由车内温度传感器、车外空气温度传感器、蒸发器温度传感器、阳光传感器、空气控制电动机、加热器和冷凝器风扇、车内控制装置组成。
空调制冷系统是由压缩机、冷凝器、贮液干燥器、膨胀阀、蒸发器和鼓风机等组成各部件之间采用铜管(或铝管)和高压橡胶管连接成一个密闭系统。
(5)电动汽车冷却原理图扩展阅读:
空调类型
1,按驱动方式分为:独立式(专用一台发动机驱动压缩机,制冷量大,工作稳定,但成本高,体积及重量大,多用于大、中型客车)和非独立式(空调压缩机由汽车发动机驱动,制冷性能受发动机工作影响较大,稳定性差,多用于小型客车和轿车)。
2,按空调性能分为:单一功能型(将制冷、供暖、通风系统各自安装,单独操作,互不干涉,多用于大型客车和载货汽车上)和冷暖一体式(制冷、供暖、通风共用鼓风机和风道,在同一控制板上进行控制,工作时可分为冷暖风分别工作的组合式和冷暖风可同时工作的混合调温式。轿车多用混合调温式)。
3,按控制方式分为:手动式(拨动控制板上的功能键对温度、风速、风向进行控制)和电控气动调节(利用真空控制机构,当选好空调功能键时,就能在预定温度内自动控制温度和风量)。
4,按调节方式分为:全自动调节(利用计算比较电路,通过传感器信号及预调信号控制调节机构工作,自动调节温度和风量)和微机控制的全自动调节(以微机为控制中心,实现对车内空气环境进行全方位、多功能的最佳控制和调节)。
⑥ 纯电动汽车的动力电池的冷却
纯电动 汽车的动力电池的冷却,而新能源汽车的动力电池作为汽车的动力来源,其充放电的热量会一直存在。动力电池的性能与电池温度密切相关。然后,汽车边肖将与朋友们分享纯电动汽车动力电池的 冷却系统 。空可调循环冷却式在
纯电动汽车的动力电池的冷却
纯电动汽车的动力电池的冷却,而新能源汽车的动力电池作为汽车的动力来源,其充放电的热量会一直存在。动力电池的性能与电池温度密切相关。然后,汽车边肖将与朋友们分享纯电动汽车动力电池的冷却系统。
空可调循环冷却式
在高端电动汽车中,动力电池内部有一个制冷剂循环回路,与空调制系统相连。宝马X1 xDrive 25Le(F49 PHEV)插电式 混合动力 汽车动力电池冷却系统
动力电池单元由防冻液直接冷却,防冻液循环回路和制冷剂循环回路由防冻液制冷剂换热器(即冷却单元)连接。因此,空调制系统的制冷剂循环回路由两条并联支路组成。一个用于冷却车内空房间,另一个用于冷却动力电池单元。有两个分支,一个膨胀截止阀和两个独立的冷却系统。
冷却的工作原理:
电动防冻泵通过防冻液循环回路输送防冻液。只要防冻液的温度低于电池模块的温度,就只能通过循环防冻液来冷却电池模块。防冻液温度升高,不足以将电池模块的温度保持在预期范围内。
因此,需要降低防冻液的温度,需要防冻液制冷剂热交换器(即冷却单元)。这是动力电池防冻循环回路与空调制系统制冷剂循环回路之间的接口。
如果冷却装置上的膨胀和关闭组合阀被电动启动并打开,液态制冷剂将进入冷却装置并蒸发。它可以吸收周围空气体的热量,所以它也是流经防冻液循环回路的防冻液。电动空压缩机(EKK)然后压缩制冷剂并将其输送至电容器,在电容器中制冷剂再次变成液体。因此,制冷剂可以进一步吸收热量。
为了确保防冻液通道排出电池模块的热量,冷却通道的整个平面必须以均匀分布的力压在电池模块上。这个压力是由嵌入防冻液通道的弹簧杆引起的。根据电池模块和外壳下半部分的几何形状,弹簧杆会相应调整。
热交换器的弹簧杆支撑在高压蓄电池单元外壳的下部,因此防冻液通道被压到蓄电池模块上。
动力电池单元防冻液循环回路中电动防冻液泵的额定功率为50W。电动防冻泵通过冷却单元上的支架固定,该支架安装在动力电池的右后角。
水冷的
水冷动力电池冷却系统利用专用的防冻液在动力电池内部的防冻液管道中流动,将动力电池产生的热量传递给防冻液,这样会降低动力电池的温度。以荣威E50 电动车 为例,共享动力水冷冷却系统。
荣威E50冷却系统包括两个独立的系统,即逆变器(PEB)/驱动电机冷却系统和高压电池组冷却系统(ESS)。
荣威E50动力电池冷却系统结构如下图所示,一般由膨胀水箱、软管、冷却水泵和电池冷却器组成。
借助热传导原理,冷却系统通过在每个独立的冷却系统回路中循环防冻液,使驱动电机、逆变器(PEB)和动力电池组保持在最佳工作温度。防冻液是50%水和50%有机酸技术(OAT)的混合物。防冻液需要定期更换,以保持其最佳效率和耐腐蚀性。
1.蒸发器
膨胀罐配有一个减压阀,安装在变频器(PEB)的托盘上。溢流管连接到电池冷却器的出口管,出口管连接到冷却水管的三通。膨胀罐配有& ldquoMAX & rdquo和& other最小& rdquo刻度标记,便于观察防冻液液位。
02.软管
橡胶防冻软管在部件之间输送防冻液,弹簧夹将软管固定在每个部件上。动力电池冷却系统(ESS)软管布置在前舱和后地板总成下方。
3.冷却水泵
动力电池冷却系统的防冻液泵穿过安装支架,通过两个螺栓固定在车身底盘上,通过其转动使高压电池组的冷却系统循环。
4.电池冷却器
电池冷水机组是动力电池冷却系统的关键部件,负责将动力电池保持在适中的工作温度,使动力电池的放电性能处于最佳状态。电池冷却器的关键由热交换器、带电磁阀的膨胀阀、管道接口和支架组成。热交换器一般用于动力电池防冻液与制冷系统制冷剂之间的热交换,将动力电池防冻液的热量传递给制冷剂。
BMS负责调节电动水泵。当高压电池组温度升至32.5℃时,电动水泵将开启,当温度低于27.5℃时,电动水泵将关闭。BMS发出信号,要求关闭电池冷却器膨胀阀,并转动水泵。
当ETC收到来自BMS的膨胀阀电磁阀开启信号时,ETC开始开启电池冷水机组膨胀阀电磁阀,并向EAC发送启动信号。高压电池组的最佳温度为20℃~30℃。
正常运行时,当高压电池组的防冻温度高于30℃时,ETC会限制乘员舱的冷却能力,当防冻温度高于48℃时,ETC会关闭乘员舱的冷却功能,除霜模式除外。
ETC仅调节防冻液温度。调节BMS防冻液和BMS高压电池组之间的热交换。
当汽车进入快充模式时,ETC将被网关模块唤醒,高压电池组冷却系统将进入正常工作状态。
以上是汽车边肖分享给朋友的纯电动车动力电池的冷却情况。不知道车边肖的分享朋友对冷却系统有没有更好的了解。希望车系的分享对朋友们有所帮助。如果你想了解更多的知识,请关注这个网站。
纯电动汽车的动力系统详解
纯电动汽车动力系统详解:电池技术
电池是电动汽车的动力源,也是一直制约电动汽车发展的关键因素。电池的关键性能指标是比能量(E)、能量密度(Ed)、比功率(P)、循环寿命(L)和成本(C)等。要使电动汽车与燃油汽车竞争,关键是开发高比能量、高比功率、长使用寿命的高效电池。
纯电动汽车动力系统详解:驱动技术
电机和驱动系统是电动汽车的关键部件,需要有良好的性能。驱动电机应具有调速范围宽、转速高、起动转矩大、体积小、质量小、效率高、动态制动和能量回馈强的特点。汽车用电机有四种类型:DC电机、感应电机、永磁无刷电机和开关磁阻电机。 纯电动汽车的动力电池的冷却 纯电动汽车的动力系统详解 @2019