新能源汽车锰
㈠ 麒麟电池有锰元素吗
有。
麒麟电池采用的是高锰材料,红星发展需求爆发正当时,公司主营两大板块产品,锰系和无机盐(锶和钡),目前均处于行业变革,需求爆发的节点。锰是最具预期差,兼具现实和未来新能源电池材料体系的金属。主要涵盖锰酸锂、三元正极、磷酸锰铁锂、钠离子电池正极以及未来的富锂锰基材料,锰酸锂作为目前锂电池四大技术路线之一,在3C、电动两轮车以及A00级电动车有着难以比拟的性价比优势,行业预期未来增速在30%+,三元正极则是受益高能量密度,未来继续与磷酸铁锂并驾齐驱,NCM622和811占比持续提升,磷酸锰铁锂则是磷酸铁锂的升级版,能量密度提升15-20%,达到中镍三元的水平,行业龙头德方纳米已经在建设产能,钠离子电池凭着优秀的成本优势,有望在储能和动力领域大放异彩,宁德时代发布的第二代钠电池,采用锰基高锰普鲁士白正极材料,锰含量达到38%,富锂锰基材料被认为是下一代高性能的正极材料,成分上就是锂和锰的集合。以上五种材料,锰酸锂的锰源是电解二氧化锰,其他锰源都是高纯硫酸锰。
锰的定价:目前锰元素90%应用在冶金,锰资源定价体系主要看冶金行业。所以,虽然今年二氧化锰、锰酸锂、硫酸锰价格大幅上涨,但是锰矿价格基本稳定,甚至有所下滑。锰资源储量丰富,成本较低,以电解锰为例,即使经过大幅上涨,价格刚刚4万/吨,远低于镍、钴、锂等新能源金属,所以在新能源汽车大发展的时代,选用成本优势的金属材料也是一种必然,况且技术已经成熟。
㈡ 新能源汽车用什么电池
新能源汽车用什么电池 新能源汽车电池有五种,这五种电池分别是:钴酸锂电池,磷酸铁锂电池,镍氢电池,三元锂电池,石墨烯电池。 新能源汽车五种电池的优缺点: 1、钴酸锂电池:优势:生产技术成熟,能量比高,能量比大约是磷酸铁锂电池的两倍。劣势:高温状态下,稳定性相比镍钴锰酸锂电池、磷酸铁锂电池稍差。 2、磷酸铁锂电池:优势:稳定性是目前车用锂电池中最好的。劣势:能量密度较三元锂电池、钴酸锂电池仍有不小的差距。还有就是当温度低于零下5度的时候,充电效率有所降低。以及在温度过低的情况下,会影响电池的电容。磷酸铁锂电池应用的车型,不适合在北方行驶,尤其是东北等极寒地带,因为那里冬天的温度实在是太低了,会影响磷酸铁锂电池的使用寿命。 3、镍氢电池:优势:电池能量储备大,重量更轻,使用寿命更长,并且对环境无污染。劣势:制造成本太高,性能方面比锂电池差。 4、三元锂电池:优势:相对于钴酸锂电池,三元锂电池安全性更高。更适合未来新能源汽车电池的发展趋势,适合北方天气,低温时电池更加稳定。劣势:电压太低,能量密度介于磷酸铁锂电池和钴酸锂电池之间。 5、石墨烯电池:优势:这种新能源电池可把数小时的充电时间压缩至不到一分钟。由于锂电池内添加了石墨烯,可以帮助锂电池降低产能时的热量,达到减少能量损失的目的,避免了大量能量被浪费,减少了热量对电池的损害,提高了电池的使用寿命。劣势:成本太过昂贵,大约每克2000人民币,目前无法大规模应用。 @2019
㈢ 为啥这么多人不看好新能源汽车读完这篇文章,终于明白了
近两年来, 纯电动车得到国家大力的推广,上到出租、公交等运营车辆,下到公务、私人等个人用车,然而随着骗补、续航焦虑、软件Bug等一系列热点事件的出现 ,这个市场依然存在着大批并不看好纯电动 汽车 的群体。
毕竟相比发展了一百多年的内燃机,从技术上而言, 电池容量小、充电时间长、气温影响大、电容量衰减以及废旧电池回收避免污染 的问题,依旧难以完美解决。所以消费者在选择时,更多会偏向于传统燃油车也不足为奇了。
首先,针对国家为何如此坚决拥护并推进电动车的发展,大致有以下三点:
一,需要摆脱对石油进口的依赖。 我国石油进口比例高达60%,而石油作为全球战略资源,一直是各大国的争夺重点。一旦大国关系或者局部地区的局势出现问题,极易引起能源危机。
二,需要在 汽车 工业上实现重大进步。 传统燃油车因为有发动机和变速箱等复杂的动力系统,导致入门门槛极高,这么多年以来我国在动力系统的核心技术上始终被国外供应商掣肘。
三,紧跟国际环保形势。 化石燃料带来的污染是显而易见的,环保也是国际命题,在环保上作出努力既是为子孙后代留一片净土,也是对大国形象的一种维护。
而作为一名消费者,最关心的事情则是花钱买到物有所值的产品或服务。而购买电动车对于大多数消费者来说却有些苦不由衷的感觉。 众所周知,大部分人买电动车大多是因为有补贴、不限行、送牌照这一系列限制政策下所产生的红利,因此消费者不是想买电动车,而是因为政策使然没有别的选择。
大多数人认为纯电动车相较于燃油车,在抛开政策优势与“环保”标签以外,电动车能做到的,燃油车也可以做到且未必更差,尤其 在代步需求方面,燃油车反而表现的更加稳定。而电动车在短途代步需求方面则沦为第二选择方案,还谈不上替代。
那咱们就来详尽罗列下纯电动车的那些黑点:
首先电动车不考虑国家补贴,整体售价均高于同级别燃油车是不争的事实。 目前三元电池包成本大概是1300元/度,而磷酸铁锂大概是1100元/度,因此纯电动的成本相比燃油车基本都要贵上几万元。当然现在集体发展纯电动确实能大幅度压缩电池成本,因此续航500左右的电动车开始多了起来。但价格方面 又不可能无视电动车的保值率低这一特性 ,电动车就像手机一样更新换代很快,且技术更新也非常迅速,因此保值率很低。
关于 环保方面,或许电动 汽车 并没有达到我们所理解的环保程度。 据中国产业信息网《2017年中国大气污染成因分析》的报告中指出, 2015年能源消费结构中,美国石油消耗量占比是36%,而中国只有18%;而在对几个大气污染严重的城市(石家庄、廊坊、济南、郑州)的调查中, 汽车 排放对污染的贡献分别只有15%、12%、15%、24%,远低于"燃煤"、"扬尘"和"工业生产" 。
国家统计局在18年初的数据显示,2017年,中国火力发电量(燃煤,石油,天然气,主要以燃煤为主)46627亿千瓦时,比上年增长5.1%,增速慢于清洁能源发电增长速度。但至2017年火力发电占比量仍高达71.8%。《BP2035世界能源展望国家和地区专题-中国专题》明确指出:到2035年,中国电力行业的能源消费将增长81%,煤炭仍然是主导性燃料类型,其市场份额预计会从77%降至2035年的58%。
从某种意义上来说,大规模的电动车投放实际上只是一种污染的转移而已。 因为平均到每台车上,有超过70%的电量是通过化石燃料获得。如此高比例的化石燃料消耗则是雾霾(空气污染)的元凶,早在2014年的一份专题报告《煤炭使用对中国大气污染的贡献》中指出,煤炭消费量越大,雾霾天数越多,大气环境越差的结论。
而 动力电池原材料则来自于镍钴锰以及其他稀土矿的开采 ,燃油车的报废直接当废铁拆解处理即可,而动力电池大规模报废之后,处理不当的话, 重金属对土壤和水源的污染则会非常严重。 从原材料开采、电能来源到后续报废都会对环境造成严重污染和破坏的电动车,打上环保的标签实属不当。
关于充电方面,燃油车以"加油站"为基石,而纯电动 汽车 便以"充电桩"为基础。从实际情况来看,虽然如今在一线城市充电桩已经相对普遍,但在二三线城市,充电桩并不普及,也成为了目前阻碍纯电动 汽车 发展的一个重要问题,再加上如今充电接口和协议不统一,充电桩无法适用于所有纯电动 汽车 ;二是配套设施不具备区域连贯性。充电桩的问题直接关系到纯电动 汽车 使用的便利性,一旦丧失便利性,纯电动 汽车 也就成了空头支票。
或许有人会觉得充电站只要数量上有优势就能解决问题,实际上 充电站即使数量上与加油站比肩依然无法解决续航焦虑 。以2017年广东省为例,其民用车保有量为1894万辆,而整个广东省的加油站数量则为5817座,平均3200辆车共用分摊一个加油站,但燃油车车主并不会抱怨加油不方便,更不会在自家车位安装加油枪, 主要原因则是因为加油的等待时间远少于充电时间。
充电慢自然成为了消费者不看好纯电动 汽车 的另一大原因。 有句话说是:不是在充电就是在充电的路上。确实, 目前大多数充电桩都是慢充桩,一辆车充满需要5-8小时 , 比如众多品牌宣称的快充40分钟,慢充8小时。而实际体验下来,用家用220V电慢充可能需要15小时左右才能完全充满。而快充30kw的桩需要2小时,60kw的桩需要1.5小时,且 如果一个充电站有几辆车同时插枪,由于电流均摊,充电速度反而会慢一倍。想象一下春运高峰,加油3分钟变成了快充30分钟的电动车,等待队伍一定颇为壮观 。
而 电池的续航水平一直都存在着水分,受制于温度、寿命、工况等综合因素,电动车的实际续航均低于厂家承诺的里程数 ,当然这一情况也不是没有解决办法,比如上汽就利用水冷与电加热技术,对电池的温度进行实时的监管与调控,使其始终处于良好的工作状态,从而解决了南北气温差异的问题。
电池的相关技术也存在着各种壁垒 ,由于电池的能量密度是250w/kg,汽油的能量密度是12000w/kg,是电池的40倍。一辆小车装满55升汽油,才50kg不到,按汽油热效率20,电池80%计算,汽油提供的有效能量132kw,一节18650电池有效功率7.2瓦,55升汽油相当于1.8万节18650锂电池。所以, 在电池密度至少要提高10倍,充电时间至少要少于20分钟,电动车才在性能上与汽油车不分上下。
这种电池目前很难存在 ,132kw的能量,如果按380v供电进行充电,20分钟内充满,此时充电电流将达到1000安培,充电桩的功率将到达400kw!1000A是什么概念?得400平方毫米的铜线才能经受得起1000A电流,大致相当于2.5普通铜线160根扎在一起, 相当于电动 汽车 里的电池相关导线至少有2cm直径以上那么粗!
一个拥有600万小车的城市,如果换成这种电池技术,假设只有10%的车辆回家充电,瞬时功率需要60万*400kw,约2.4亿kw的供电需求,相当于10个三峡大坝的才能满足,相当于现在大城市最大供电能力的10倍以上。终究, 物理限制能很难得到突破,除非电池密度提高10倍,发电量提高10倍。不然,电动车只能在低速、低功率、短程的小车上有所发展。
关于后期保养方面,售后维修难也一直制约着纯电动 汽车 的发展 。比如,当下绝大部分的技师能够修传统 汽车 ,但缺少电器方面的知识,并不能很好地维修纯电动 汽车 ;另外,相对于传统 汽车 而言,纯电动 汽车 零部件较为稀缺,电动 汽车 生产量和保有量都少,因此价格相对较高, 而纯电动 汽车 在维修时一些部件只能更换,无法进行维修,昂贵的售后费用只能令消费者望而却步。
打造纯电动 汽车 行业现状当前依旧较为火热, 国家以及行业现阶段也处于摸石头过河,当前市场的火热繁荣景象或许只是风口上的风比较大 ,毕竟过程中摸鱼的人太多。因此,纯电动行业可能会在近几年很快完成洗牌、合并,最后剩下的便是行业的存活者。
尽管多数欧洲国家相继推出了燃油禁售时间表,本质上都想加速本国电动 汽车 产业链的发展, 而针对市场需求多样性较高的国家来说,燃油车与纯电动车现阶段则是以互补的形式存在。 或许只有等到针对电动车的相关政策红利全部退出之时,电动车依然畅销的时候,才是纯电动的春天。
亦或纯电动车逐渐被淘汰也是很有可能的,毕竟现阶段电池技术、低温表现以及续航里程都是制约其最大的瓶颈 。而现阶段除了作为过渡产品的混动车型以外,5分钟填装、700km续航的氢燃料 汽车 作为新能源 汽车 的一种或将成为未来的主力也说不定。
㈣ 趣味问题:新能源汽车为何定义为「电驱」-真的环保吗
内容概述:
新能源概念
电动汽车普及的意义
电池梯次利用的价值
将电动汽车定义为「新能源车」也许很多汽车爱好者并不能接受,因为电能的利用两头挂的话也有三个世纪的历史,这种老旧能源能算新吗?
新能源汽车的电池会在「溯源平台」的管理中完成每一个步骤,严格程度是超出想象的;所以电动汽车对于环保是有巨大贡献的,同时还能加速清洁电能的增长,并且解决随时可能出现的石油危机问题,普及这种车型就显得很有意义了,对不对呢?
(磷酸铁锂电池的制造成本逐渐低至铅酸电瓶程序,未来两轮电车也将有可能定义为新能源)
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
㈤ 新能源汽车的旧电池,后来都去了哪儿
随着新能源 汽车 产量和消费量逐年递增,电池报废率也随之增加。2013年前后是国内新能源 汽车 大规模推广的起点,按照动力电池设计使用年限普遍为5到8年,那么2020年前后无疑是动力电池的 报废高峰期 。据估算,2020年国内累计退役的动力电池规模或将达到 20万吨 (约25GWh) ,2025年累计退役量约为 78万吨 (约116GWh) 。
在如此巨量的退役电池面前,电池报废后该如何处理成为最大的难题。 众所周知,废弃电池内含有的多种贵金属和危险物质,如若处理不当不仅会造成 资源浪费 ,更有可能造成 环境污染 ,所以废旧电池综合回收及处理一直是新能源业内焦点。
目前来看,国内对于废旧动力电池的回收和利用主要有两种方式,一种是 再生利用 ,另一种是 梯次利用 。
先来说说再生利用,它是是对废旧电池进行 拆解、破碎、分选、材料修复或冶炼等处理后进行资源化利用 。以常见的三元锂电池为例,内部含有大量的锰、镍、钴等有色金属,就算长期使用,直到电池衰减到初始容量的30%以下,里面的一些金属元素仍可以被回收利用,从而被重复利用再加工,尤其是钴和镍更是较为稀缺的矿藏资源。 不过电池回收工艺的过程极为复杂,成本也极高。
听起来很简单,但实际操作的难度很大。首先是要对电池进行彻底放电,然后对电池内部各种材料如隔膜、电解液、正极、负极等材料等进行拆分,取出各部分材料,最后才能冶炼回收金属元素。
目前国内动力电池的主流回收工艺有几种,如 物理拆解 、 干法冶金 、 湿法冶金 等几种工艺,不同的工艺处理都有各自的优缺点,而且针对不同类型的电池也有不同的回收工艺。比如湿法冶金适合磷酸亚铁锂电池的回收,优点是工艺 稳定性好 ,不足在于 成本高 和 工艺复杂 。而干法冶金回收钴和镍的效果更好,优点是 工艺简单 ,但 污染较大 ,这里需要专业的防污染措施。
由于电池回收难度之大,所需要投入的人力物力无疑也是巨大的。有数据显示,目前1吨磷酸铁锂电池回收成本在 8500元 左右,而经过一系列回收处理之后, 市场价值仅9000元左右 ,基本没什么利润可言。
值得注意的是,目前电池回收业务除了小部分被掌握在有资质、有规模且正规的大型第三方回收企业旗下之外,很大一部分退役电池还是被一些作坊类企业分摊,这些非正规的小作坊通过分散的中介将4S店或者废弃回收站里的关系收集动力电池,使用原始、低成本的手工拆解方法将电池拆解后,再加工卖给相关企业赚取利润,但由于非专业拆解以及废液处理,因此环境污染、甚至爆炸的风险较高。
梯级利用是对废旧电池进行必要的检测、分类、拆分、电池修复或重组后,当电池容量降至初始容量的70-80%以下,动力电池就难以满足 汽车 续航要求, 但这些动力电池却可以重新用于低速电动车、电动工具、太阳能/风能储能装置等领域。
在正规的梯级回收利用中,符合安全标准的退役 汽车 动力电池会找到一个“ 新岗位 ”,尽量 榨干它们的剩余价值 。例如给动力/续航需求较弱的电动车辆使用、给通讯基站、路灯等装置当储能装备。
整体来看,梯级利用的一大优势是 无需把电池完全拆解,更环保也更安全 。但经济效益较低,毕竟这些退役电池主要应用在储能、照明等领域,未免有点大材小用。尽管梯级利用的产生的效益有限,但也是今后动力电池回收利用行业的重点方向,因为不可能所有的闲置退役电池都能被快速的再生利用, 而梯级利用恰好是一种周期较长的电池回收方式 。
如今的电池回收市场,主要的参与者有第三方的电池回收企业 (格林美、邦普等) 、电池生产厂商 (宁德时代、比亚迪等) 、电池材料生产厂商 (赣锋锂业、华友钴业等) 以及小作坊等。值得一提的是,随着此前工信部文件提出 谁产谁负责 , 谁污染谁治理 ,明确了 汽车 生产企业将承担动力蓄电池回收的主体责任,主机厂也在陆续布局电池回收业务。特斯拉去年底也在官网上宣布上线电池回收服务。
不过,由于车企不可对电池进行直接拆解,因此大多数车企选择与电池回收企业合作的方式,这其中 既有梯级利用,也有通过再生利用 。比如比亚迪利用e6车型回收的磷酸铁锂电池组建造了浙江省最大规模的梯次储能电站、比亚迪、三星联合格林美公司成立了福建格林美再生资源有限公司、博世联合宝马集团,用退役电池建造大型光伏电站储能系统。而特斯拉在去年9月份也上线了电池回收服务,官网表示, 报废的锂离子电池均不会做填埋处理,可100%回收利用。
此外,诸如像丰田、大众、通用这样巨头车企都建立了各自完整的电池回收体系,似乎为未来大量退役电池做好了准备。
虽然电池回收的参与者众多,但国内电池回收体系的规范尚未形成。近期发布的 《新能源 汽车 产业发展规划(2021-2035年)》 ,再次强调了完善动力电池回收、梯级利用和再资源化的循环利用体系,鼓励共建共用回收渠道,建立健全动力电池运输仓储、维修保养、安全检验、退役退出、回收利用等环节管理制度,这将引导动力电池回收利用行业朝着更规范更 健康 的方向发展。
(文/电车资源 大师兄)
㈥ 警惕新能源车“爆发式污染”,20万吨退役电池该作何处理
13日,“20万吨退役电池大量流入黑市”话题登上热搜,作为新能源汽车产业的重要一环,退役蓄电池回收问题逐渐被关注到。 有专家表示,1块20克质量的手机电池可使1平方公里土地污染50年左右,更大更重的电动汽车动力蓄电池,含镍、钴、锰等重金属,电解液中的六氟磷酸锂在空气环境中容易水解产生五氟化磷、氟化氢等有害物质,或对环境带来更大威胁。
处理责任应该归谁?
我国新能源汽车产量在2025年将达到400万辆,2030年将达1000万辆。随之攀升的是新能源汽车所装载的动力电池需求量的增加。然而,自新能源汽车进入市场至今,动力电池已经进入到回收、处理的高峰期。电池如何回收、能否有效再利用、谁该为动力电池的全生命周期负责,成为学界和业界关注的焦点,也是无数电动汽车用户关心的热点问题。明确了责任,新能源电动车电池的回收处理问题变得简单起来。“新能源电池回收很简单,它是一个电池包或电池组,不是一个个电芯,所以在电池报废以后,可以直接拆卸下来交给回收利用公司,让它们对电池包进行拆解,对电池芯进行检测,符合标准可以再利用,不符合标准作为废电池交给处理厂。”
㈦ 新能源汽车主要以什么为能源
【太平洋汽车网】新能源汽车是指传统能源之外的各种能源形式,一般为在新技术基础上加以开发利用的可再生能源,如太阳能、地热能、风能、海洋能、生物质能和核聚变能等。
随着中国新能源汽车产业链的成熟,上、下游协同合作能力加强,新能源汽车生产工艺将获得改善和提高。同时,智能化工厂的建设将有效提高新能源汽车的生产效率。
新能源汽车可分为纯电动汽车、插电式混合动力汽车及燃料电池汽车三类,其中纯电动汽车与插电式混合动力汽车是中国市场上最常见的新能源汽车类型。
纯电动汽车是指驱动能力完全由电能提供、由电机驱动的汽车。电机的驱动电能来源于车载可充电储能系统或其他能量储存装置。插电式混合动力汽车是指能够至少从可消耗燃料和可再充电能(能量储存装置)两类车载储存的能量中获得动力的汽车。
插电式混合动力汽车车身上同时装有发动机与电动机,车身除装有汽油加注口外,还配备了外接电源接口可为电池充电。燃料电池汽车是指以燃料电池系统作为单一动力源或以燃料电池系统与可充电储能系统作为混合动力源的电动汽车,当前的燃料电池汽车主要以氢气为动力来源。
02中国新能源汽车产业链中国新能源汽车产业链的上游为矿产资源行业。新能源汽车核心零部件生产所需的基础原材料包括锂、铜、锰、钴、镍、石墨、稀土以及其他矿石原料。
动力电池的基础材料部件包括正极材料、负极材料、电解液以及隔膜。中国动力电池主要以锂电池为主,车用动力电池包括磷酸铁锂电池、三元材料电池、锰酸锂电池、钴酸锂、钛酸锂电池等类型。磷酸铁锂与镍钴锰三元材料是应用最广的电池正极材料,两者在乘用车领域的装机总量已超过95%。
中国新能源汽车产业链的中游为核心零部件行业,新能源汽车的核心零部件主要包括动力电池、驱动电机及电控系统。近年来,中国动力电池行业实现了飞跃式发展,新能源汽车对动力电池的需求量巨大,以宁德时代新能源科技有限公司、比亚迪为代表的动力电池企业占据较大优势,其中,宁德时代在锂电池市场的占有率超过80%,拥有市场垄断优势。
(图/文/摄:太平洋汽车网问答叫兽)
㈧ 新能源车的投资机会分析
在之前的文章 双碳投资机会梳理(一) 里提到过,中国双碳领域百万亿级别的投资里边,绿色能源是第一大投资板块,其次是绿色交通领域。
对于投资人,尤其是一二级投资者来看,在绿色交通领域应该重点布局哪些机会,应该重点在哪些赛道上加大投入;一级投资人应该主攻的方向在哪里?结合欧阳明高院士最近在中国电动汽车百人会上的演讲《推动新能源汽车可持续增长》的主要内容结合自己的理解分析新能车的主要投资机会。
一、新能源车销售市场预期
根据欧阳院士团队的预测:预计在2025年,我国新能源车销量会在700万辆到900万辆之间。到2030年,大致是在1700万辆到1900万辆。保有量方面,2025年会超过3000万辆,2030年大概接近1亿辆,到2035年大概接近2亿辆,2040年接近3亿辆。
根据国际能源署的预测,从2020年到2030年,全球电动轿车将增长18倍,到2030年销量达到5500万。如果按照这个预测, 意味着到2030年,中国的新能源车销售占全球大约在30.9%-34.5%之间,应该是全球汽车销售的第一大国 。
根据中国汽车协会的数据2021年,我国汽车销售量为2627.5万辆,同比增3.8%,结束了自2018年以来连续三年下降趋势。其中,新能源汽车和自主品牌的表现成为全年汽车市场中的亮点:新能源汽车2021年销量超过350万辆,市场占有率提升至13.4%。 如果按照欧阳院士团队的预测去推算,到2030年之后,新能源车的销售会占中国汽车销售量的70%以上。
二、新能源车产业的发展格局预测
根据欧阳院士的分析,未来新能源的几个大的发展方向:
对于发展方面,欧阳院士的几个大的分析,其中 他认为电动车领域,电池技术占到电动汽车技术含量的60%。 不可否认在电动车领域中电池的重要性,但个人理解,新能源未来的发展除了续航里程问题的解决之外,驾驶的智能化可能是主攻的另外一个方向,而在这个领域里中国仍然是相对的弱项,离美国应该仍有差距。而从目前一级市场的投资热度来分析,除了电池之外,智能驾驶系统是投资的重点和热点。
电动车给了中国在汽车领域内一个弯道超车的机会,同时也给了新进入者实现对老牌汽车企业的超越机会。新能源汽车兴起也将引发汽车产业的技术革命。新进入者,尤其是带着互联网思维的造车新势力没有老牌汽车品牌和传统车型的压力,更具创新性,品牌形象方面也更加大胆。根据欧阳院士的预测, 未来5-10年会有一次汽车行业的大洗牌 。
三、新能源车发展瓶颈和挑战
新能源车快速发展带来产业蓬勃发展的同时,也面临着一定的发展瓶颈和挑战需要解决。
(一)电池材料资源限制
国外机构基于2030年全球5500万辆电动汽车年销量的激进预测给出的动力电池的年装车量结果是50亿千瓦时,而保守预测结果是30亿千瓦时。
基于电动汽车保有量可以预测 中国车载电池的总保有量,预计2025年会超过20亿千瓦时,2030年会超过70亿千瓦时,2035年会超过150亿千瓦时。
如此大量的销售量和保有量,意味着对电池原材料的大量需求。目前电池原材料中最主要的材料是锂和钴。由于供不应求的状态,导致锂与钴持续暴涨。碳酸锂的价格在过去的一年中其中有4个月单月涨幅超过30%的,4-7月价格小幅调整,单位最多回调的幅度也小于0.5%。
对于未来锂和钴的资源是否能够承载电动车发展的需求。欧阳院士的分析是:锂从储量是看是足够的,钴未来可能会不足。
从潜力看,全球锂资源经济可采储量为2100万吨,如果按三元811电池材料体系算,可以生产电池2000亿千瓦时。 按平均一辆车100千瓦时算,可以制造20亿辆电动汽车。而且,这还仅是经济可采储量,总勘探储量为8600万吨。 钴的资源经济可开采储量只有710万吨。 只能供应950亿千瓦时。锰的资源非常富余。
但是,资源分配非常不均衡:锂矿有3/4分布在澳大利亚、智利、阿根廷。钴矿有2/3依赖于非洲的刚果金。镍矿的一半依赖于印尼和俄罗斯。资源分布是极不均匀。虽然产量的70%在我国,但是关键的原材料锂、钴和镍均需要大量进口。
(二)电池材料的循环利用
电池是有使用寿命的,大量的电动车保有量,意味着未来有数量庞大的电池需要处理。目前的处理方式主要包括:干法、湿法和物理回收。目前全国满足废旧动力蓄电池综合利用行业规范条件仅有14家回收利用企业,其中最知名的应该是A股上市公司格林美。
(三)电动车是否真的能够碳减排
2021年纯电动车和燃油车单位里程碳排放数值大约分别是:电动汽车每公里70克二氧化碳排放,燃油车大约是每公里176克二氧化碳排放。 预计2035年纯电动汽车单位里程碳排放下降到每公里20克,相比2021年降低70%以上,主要是因为能源结构的变化,也就是绿电比例上升导致。
从电池全生命周期减排的潜力看,现有电力结构下,物理回收减排超过50%;湿法回收减排32%;火法回收减排3.5%。随着绿电比例的提升,在2030年电力结构背景下碳排放再降低12%;2050电网深度脱碳背景下,碳排放再降低75%;100%绿电可以实现电池生产制造全生命周期近零排放。
从速局对比来看,电动车减排效果还是很明显的,未来随着绿电比例的上升,动动车全生命周期的碳排放减排量会继续上升。
(四)锂电池会不会被取代
关于这个问题,欧阳院士的结论是: 锂电池还会用很久 。对于电池发展方向的判断:
1) 2025年会出现与现有液态电解质锂离子电池比能量大体相当的第一代全固态电池 ;
2) 预计到2035年,钠离子电池、钾离子电池性能会大幅提升,比能量会达到每公斤300瓦时左右。 与现在的高比能量锂离子电池相当;
3) 2 035年之后,新一代固态电池,钾、镁、钠、锂-硫等各类电池会进入市场。 到2050年,液态锂离子电池有可能减少到约20%。
那么对于一级投资者来说,方向已经非常明确。现在要投资布局的主线是固态电池技术以及非锂离子电池的研发。
四、以电动汽车为核心的智慧能源系统
关于以电动汽车为核心的智慧能源系统是我在此前的研究里边没有考虑的投资方向。也是这次学习的重要收获之一。
(一)快慢充以及换电
超快充电主要用于高速公路的应急补电。现在限制快充的几个矛盾点:高功率型与高比能量型的矛盾;高功率型可实现快炒,但比能量低;高比能量型快充可能会引发关于车的安全、寿命短、发热等很多问题。超快充电应用主要用于高速公路的应急补电。目前可实现5分钟快充电量跑200公里,每分钟最高升温7-8℃。
另外一个模式也是可以大面积推广的是,带储能的充电站,可实现换电池。这个模式的一个缺陷就是如果是私家车是否愿意用自家的电池与充电站的电池就行更换。所以换电池可能更多的是用在商用车,尤其是高出勤率、重型荷载和短途运输卡车的换电池。
未来可以探讨的一个运行模式是在加油站建设快充、快换的耦合站。这是像中石油、中石化等大型企业可以考虑的运营模式。
(二)基于电动车的智慧能源系统
现在光伏、风能等可再生能源的一个重大问题就是不稳定,所以对储能的需求很高,而电动汽车由于其自带的电池是天然的储能装置,电动车的储能潜力极大,是一个巨大的蓝海市场。
因此,将电动车与电网连接,可以实现一个基于电动汽车的智慧能源系统。包括光伏、动力电池、充放电装置、家用电器连成网,一个小区、一个单位、一个社区可以形成一个个微电网,一个行政区有许多微电网联起来变成区域电网。最后形成整个城市的智慧能源,成为绿色智慧城市的重要组成部分。要能够实现这个绿色智能系统的关键是,充电桩的普及,尤其是慢充电桩,实现电力的调峰。
在这个系统里,机构投资者的机会在于充电桩概念,以及智能电表系统。
五、氢燃料电池
首先,氢燃料电池目前进入了关键技术突破的节点;现在氢燃料电池进入成本下降的快速通道,跟十年前动力电池成本开始快速下降差不多。中国氢燃料电池汽车技术路线图的规划是2025年氢燃料电池汽车保有量发展到5万到10万辆;2030-2035年间保有量增加到80万到100万辆,这是以商用车为主体。
根据上述判断,氢燃料电池与锂电池比起来,空间仍然小很多,在于氢燃料面临着制备、储存、运输等众多关键环节,目前仍待突破。
对于氢产业链的发展,欧阳院士的几个指导意见是:要主供绿氢,但是氢的关键是成本,关键是取决于绿电的成本。其次,目前在氢燃料电池产业链上目前仍有很多技术处于落后,需要突破:一是很多卡脖子环节:比如基础材料,催化剂、质子膜、碳纸,高强度碳纤维、安全阀、加氢站离子压缩机;二是氢安全技术,三是中长期的氢能源前沿技术。
对于一级投资者来说,未来在氢能的投资机会,实际是现在的卡脖子环节,尤其是其制备、储运、加氢设备等。关于氢产业链的投资机会在笔者之前的几篇公文中实际也有涉及。 从《关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》中寻找投资机会 以及 双碳投资机会梳理(四) 。感兴趣的读者可以点读。
㈨ 新能源汽车的电池分类有哪些
新能源电动汽车电池种类大致归为铅酸电池、镍氢电池、锰酸锂电池、磷酸铁锂电池和三元锂电池等几大门类。
1、铅酸电池
铅酸电池成本低、低温性好、性价比高;能量密度低、寿命短、体积大、安全性差。由于能量密度和使用寿命很低,作为动力的电动汽车无法拥有良好的车速和较高的续航里程,一般用于低速车。
2、镍氢电池
镍氢电池成本低、技术成熟、寿命长、耐用;能量密度低、体积大、电压低、有电池记忆效应。虽然性能优于铅酸电池,但是含有重金属,遗弃后对环境造成污染。
3、锰酸锂电池
锰酸锂电池成本低、安全性和低温性能好的正极材料,但是其材料本身并不太稳定,容易分解产生气体,因此多用于和其它材料混合使用,以降低电芯成本,但其循环寿命衰减较快,容易发生鼓胀,高温性能较差、寿命相对短,主要用于大中型号电芯,动力电池方面,其标称电压为3.7V。
4、磷酸铁锂电池
磷酸铁锂离子电池热稳定佳、安全、成本低、寿命长,能量密度低、怕低温。电池温度处于500-600℃时,其内部化学成分才开始分解,并且穿刺、短路、高温都不会燃烧或者爆炸,使用寿命也较长。但车辆续航里程一般,当温度低于-5℃时,充电效率低,不适合北方在冬天充电的需求。
5、三元锂电池
三元锂离子电池能量密度高、循环寿命长、不惧低温;高温下稳定不足。能量密度可达最高,但高温性相对较差,关于续航里程有要求的纯电动汽车,其是主流方向,且适合北方天气,低温时电池更加稳定。
㈩ 新能源车上游产业包括什么
新能源车上游产业包括锂、钴、镍、锰矿产资源、聚烯烃、稀土、铁矿石、电池等。以下是新能源汽车的优点:1、节约燃油能源:一般是用天然气、石油气、氢气、电力作为动力。2、减少废气排放:有效的保护环境。电动汽车不产生尾气没有污染。氢能源汽车尾气是水对环境没有污染。因为基本属于零排放所以也在限号范围外。3、效率高:一般新能源汽车采用的是新技术新结构使它的效率更高。