功率器件新能源汽車
㈠ 新能源汽車驅動電機控制系統的組成是什麼
【太平洋汽車網】電機控制系統主要由電機控制器、驅動電機、電子換擋操縱裝置、加速踏板組成,還包括高壓電線、信號線和冷卻系統。
新能源汽車電機驅動系統包括電力電子變換器以及相應的控制器。電力電子變換器由固態器件組成,主要作用是將大量能量從電源傳遞給電機輸入端。
控制器通常由微控制器或數字信號處理器和相關的小信號電子電路組成,其主要作用是處理信息以及產生電力變換器半導體開關器件所需的切換信號。電機驅動系統主要部件、儲能裝置以及電機之間的關系。
新能源汽車電機驅動系統框圖功率變換器包括直流變換器和交流變換器,直流變換器用於驅動直流電機,直流變換器用於驅動交流電機。功率變換器是由大功率、快速響應的半導體器件組成。電機驅動系統的電力電子電路中的固態器件的作用是作為通或斷的電子開關將恆定電壓變換為可變頻、可變壓的電源。
所有的功率器件都有一個控制輸入門極(或柵極或基極)功率器件根據控制器輸出的控制信號導通或者關斷。在過去的20多年,功率半導體技術迅猛發展,使得直流和交流電機驅動系統朝著小型、高效和可靠的方向快速發展。在純電動汽車及混合動力汽車電機驅動系統中,最常用的功率器件是IGBT。IGBT的電壓、電流范圍以及開關頻率完全滿足電驅動系統的要求。
DC/DC及DC/AC變換器的作用新能源汽車驅動系統控制器管理和處理系統信息以控制電驅動系統的功率流向。控制器根據駕駛員的輸入指令進行動作,同時要遵循電機的控制演算法。經過幾十年的發展,各種電機都有很多種控制演算法。在這些控制演算法中,有些是用於高性能驅動系統的,另外一些是用於要求較低的調速驅動系統。
電力牽引用的電驅動系統需要響應快、效率高,因此其被歸類為高性能驅動系統的范疇。這些電機驅動系統控制演算法是計算密集型的,需要快速的處理器及相當多的反饋信號介面。現在的處理器基本都是數字信號處理器,取代了原來的模擬信號處理器。
與模擬信號處理器相比,數字信號處理器不僅可以降低漂移和誤差,同時短時間內處理復雜演算法的能力方面性能也有了較大的提高。控制器實際上是一個嵌入式系統,其中微處理器、數字信號處理器通過外圍介面電子模塊進行信號處理。
(圖/文/攝:太平洋汽車網問答叫獸)
㈡ 新能源汽車直流母線電容器作用是什麼
【太平洋汽車網】1、平滑母線電壓,使電機控制器的母線電壓在IGBT開關的時仍比較平滑;2、降低電機控制器IGBT端到動力電池端線路的電感參數,削弱母線的尖峰電壓;3、吸收電機控制器母線端的高脈沖電流;4、防止母線端電壓的過充和瞬時電壓對電機控制器的影響。
1、平滑母線電壓,使電機控制器的母線電壓在IGBT開關的時仍比較平滑;
2、降低電機控制器IGBT端到動力電池端線路的電感參數,削弱母線的尖峰電壓;
3、吸收電機控制器母線端的高脈沖電流;
4、防止母線端電壓的過充和瞬時電壓對電機控制器的影響。
母線電容的變遷母線電容由最開始的電解電容變遷到現在普遍使用的薄膜電容,但電解電容並沒有完全消失不用,在MOS管作為功率器件的低速車或者物流車的控制器上仍然採用多個電解電容並聯使用。
豐田Prius第一代電控就是採用的電解電容,採用的三個松下電解電容器,規格為:450V/2700uF,豐田Prius在第二代電控系統中採用了定州薄膜電容,為松下的薄膜電容,但具體的參數在圖片上看不清楚,就不做介紹。
圖1第一代Prius電解電容圖2第二代Prius薄膜電容圖3國內一家商用車早期電解電容圖4國內一家商用車早期薄膜電容圖5現在控制器常用定製電容電解電容與薄膜電容的對比
1、電解電容的優點是容量比薄膜電容大;
2、薄膜電容相對於電解電容優勢;
3、薄膜電容具有更良好的溫度和頻率特性;
4、薄膜電容沒有極性,能夠承受反向電壓;
5、薄膜電容額定電壓高,不需要串聯平衡電阻;
6、薄膜電容採用乾式設計,沒有電解液泄露的危險,沒有酸污染;
7、薄膜電容更低的ESR,更強的耐紋波電流的能力;
8、薄膜電容更強的抗脈沖電壓能力;
9、薄膜電容更長的壽命;1
0、薄膜電容更加靈活的外形設計,可根據不同的需求進行定製。
圖6電解電容與薄膜電容參數對比母線電容電壓的選擇電機控制母線電壓除了正常的紋波電壓的波動,還包括IGBT動作時電流激烈的變化產生尖峰電壓和電機反轉時的反電動勢,薄膜電容在使用中允許有1.2倍額定電壓值的脈沖,理論上可以選擇額定電壓較低的薄膜電容。
如現在的320V的電機控制器系統一般選用500VDC的薄膜電容,540V的電機控制器系統選用900V或者1000V的薄膜電容。
母線電容容量的計算在新能源電動汽車電機控制器的應用中,母線電容是以IGBT的載波頻率來完成充放電,在一個PWM周期內,IGBT導通時由電池組和電容器同時為電機提供能量,IGBT關斷時,電池組向母線電容充電。
(圖/文/攝:太平洋汽車網問答叫獸)
㈢ 第三代半導體碳化硅器件:可讓新能源車能耗降低50%
易車訊 日前,我們從相關渠道獲悉,在第三代半導體碳化硅器件的幫助下,可以讓當前的新能源車實現充電10分鍾,行駛400公里,能耗降低50%的目標,目前中國電子科技集團旗下的多種規格碳化硅器件,已經在新能源車載充電裝置上實現了批量應用。
易車App提供銷量、熱度、點評、降價、新能源、實測、安全、零整比、保有量等榜單數據。如需更多數據,請到易車App查看。
㈣ 新能源汽車電控系統的組成是什麼
【太平洋汽車網】新能源汽車電控系統由ECU等控制系統、感測器等感應系統、駕駛員意圖識別等子系統組成。電控系統被稱為新能源汽車的大腦,作為三大核心技術之一,其主要還涵蓋了電機控制系統和電池管理系統。電控系統,一般是由主機廠來參與研發。
技術電池技術、電機驅動及其控制技術、能量管理技術以及電動汽車整車技術為電動汽車四大關鍵技術。電控系統用於控制電池、電機等組件,其功能包括:電池管理,發動機、電動機能量管理等。
電控系統由ECU等控制系統、感測器等感應系統、駕駛員意圖識別等子系統組成。電控系統的材料成本佔比不高,但需要經過多次試驗才能掌握關鍵演算法,尤其是混合動力汽車涉及油、電混合的控制策略,技術壁壘較高。
電機控制器作為新能源汽車中連接電池與電機的電能轉換單元,是電機驅動及控制系統的核心,主要包含IGBT功率半導體模塊及其關聯電路等硬體部分以及電機控制演算法及邏輯保護等軟體部分。
電機驅動控制系統(包括驅動電機和電機控制器)是新能源汽車車輛行使中的主要執行結構,控制和驅動特性決定了汽車行駛的主要性能指標。
一般來講,電機控制器的主要由如下幾部分組成:
1、電子控制模塊()包括硬體電路和相應的控制軟體。硬體電路主要包括微處理器及其最小系統、對電機電流,電壓,轉速,溫度等狀態的監測電路、各種硬體保護電路,以及與整車控制器、電池管理系統等外部控制單元數據交互的通信電路。控制軟體根據不同類型電機的特點實現相應的控制演算法。
2、驅動器(Driver)將微控制器對電機的控制信號轉換為驅動功率變換器的驅動信號,並實現功率信號和控制信號的隔離。
3、功率變換模塊(PowerConverter)對電機電流進行控制。電動汽車經常使用的功率器件有大功率晶體管、門極可關斷晶閘管、功率場效應管、絕緣柵雙極晶體管以及智能功率模塊等。
(圖/文/攝:太平洋汽車網問答叫獸)
㈤ 新能源汽車中IGBT的具體應用有哪幾方面-
隨著時代的發展,生活水平的不斷提高,大家越來越意識到維護生態平衡、保護環境是關繫到人類生存與 社會 發展的根本性問題。而我們每日呼吸的空氣卻深受 汽車 尾氣排放的影響造成了特別嚴重的污染。因此節能減排、降低能源依賴性逐漸成為國際 汽車 工業和環保工業的發展趨勢,同時中國政府近幾年制定了相應的節能與新能源 汽車 發展戰略。
新能源 汽車 中IGBT的具體應用有哪幾方面?
新能源 汽車 作為發展可替代性能源,是建設可持續發展低碳 社會 的重要一環,並且越來越受到世界各國的高度重視。那麼IGBT在新能源 汽車 中又是如何具體發揮其作用,下面就由我帶領大家一起來了解一下吧。
IGBT主要應用於電動 汽車 的 汽車 電機驅動控制系統、車載空調控制系統、充電樁三大方面。
1、 汽車 電機驅動控制系統
新能源 汽車 中電機驅動控制系統的主要作用在於能量的轉換,即從電池直流電轉換到電機交流電或者從電機交流電轉換到電池直流電,其中從直流電轉到交流電稱為逆變且主要用到的功率器件就是IGBT。
IGBT作為功率轉換器件,其實更常用於高壓功率的轉換。電動 汽車 在轉換過程中,電池電壓一般在200V以上,過流能力在300A以上,功率器件的擊穿電壓在600-1200V左右,開關頻率在20KHZ以內,因此可通過 IGBT模塊來實現高壓、大電流的操作。
2、車載空調控制系統
電動 汽車 車載空調的工作原理與電動驅動相同,即通過逆變器將高壓電池的直流電轉換成交流電後,驅動空調壓縮機電機進行工作,但同比電動驅動系統功率較小。而車載空調控制系統中擊穿電壓和額定電流的選定主要通過IGBT來實現。
3、充電樁
充電樁有直流和交流兩種類型。以直流充電樁為例,其工作原理是充電樁一端與交流電網相連,交流電通過整流功率模塊轉換成直流電,流經電容穩壓濾波器後通過IGBT功率模塊逆變為高頻交流電,最後變壓器耦合及整流單元將它轉換成不同的直流電壓等級,為不同的電動 汽車 充電。
在電動 汽車 中,電機驅動系統占整車成本的15%-20%,而IGBT模塊占電機驅動系統的50%,也就是說IGBT占整車成本的7-10%,是除電池之外成本第二高的元件,可以說決定了整車的能源效率。除此之外,IGBT占直流充電樁中約30%的原材料成本。
綜上所述,無論是從功能還是成本方面,IGBT在電動 汽車 領域中都起到越來越重要的作用。
備註:本文僅作學習分享,如內容上存在爭議,請及時與我們聯系,謝謝!
㈥ 新能源汽車用的什麼牌子的電池
什麼牌子的新能源 汽車 電池比較好?
現在口碑最好的要數特斯拉 汽車 里的18650松下鋰電最好了。
1 因為特斯拉Model 3電池裡面的鈷含量大幅下降了,(鈷能提升導電性和倍率性能作用)提升了鎳含量(鎳能提升能量密度)所以這款電池還是傾向於高能量密度。特斯拉首先考慮到了熱穩定保護。
2 特斯拉電動車擁有85KWh,達400V直流,整個電池板重900公斤,由7104節松下18650鋰電組成。
共由16組,每組444節、每74節一個並聯組成,其組裝科學,工藝精良,保險防熱步步到位,每節電池都焊接了精美優良的保險絲。
其牢固性相當大,從樓上扔下也不分離。
3 特斯拉好在對電池的管理搞得好,因冷卻設計科學相鄰電池的濕度為2度、就因為把住了溫度關,它就對延長電池壽命,增加續航能力提供了供障,這也是它優於其它電池組的重點選擇。
謝謝你的閱讀 !
寧德時代,比亞迪,孚能,力神等幾個品牌,其中比亞迪電池自用,寧德時代占據絕對優勢,他與比亞迪占據市場份額的70%左右,孚能今天增長最快,最顯眼,從技術路線上看,主要分為磷酸鐵鋰電池和三元電池,差不多一半 汽車 用磷酸鐵鋰,一半用三元(鎳鈷錳),磷酸鐵鋰電池比亞迪做的最早最成熟,早在2010年前後就開始推廣城市交通中的計程車,後來慢慢進去乘用車,近兩年技術路線開始轉向三元,因為國家補貼造成的,補貼要求容量密度掛鉤,磷酸鐵鋰做不過三元,今年三元材料電池會超過磷酸鐵鋰。
你好,我個人推薦比亞迪
前不久,比亞迪在新車發布會上對外宣布採用自主研發IGBT功率器件。
作為 汽車 動力系統的「CPU」, 汽車 IGBT技術長期被國外企業壟斷, IGBT作為新能源 汽車 的「CPU」,對於新能源 汽車 來說至關重要,而比亞迪自主研發IGBT器件突破國外技術壟斷,使得比亞迪新能源 汽車 的核心半導體技術不再受制於人,成為繼DM技術、全新e平台之外,比亞迪新能源 汽車 的核心競爭力之一。
比亞迪現已擁有國內首個 汽車 IGBT全產業鏈,包括IGBT晶元設計、晶圓製造、模塊封裝,模擬測試以及整車測試。
如今,我國新能源 汽車 保有量達180萬輛,連續三年全球產銷第一。其中,比亞迪的新能源乘用車銷量連續三年位居全球第一,純電動大客車銷量連續四年位居全球第一。在我國從 汽車 大國走向 汽車 強國的過程中,電動 汽車 關鍵技術的突破是不可或缺的因素,也是核心競爭力的體現。
擁有核心技術才是硬道理!我支持比亞迪!
目前主流的有兩種電池。一種是比亞迪的磷酸鐵鋰電池安全性最好,但能量密度小;一種是以寧德時代為代表三元鋰電池安全性差,容易起火,但能量密度高。沒有最好的,要看怎麼應用,像比亞迪大車用鐵電池,小車用三元電池。
華太電池。 1塊錢四節 便宜……
特斯拉好不好,價在那了。國產的?敢說保十年,結果5年後充一次電跑佰八十公里,換電池吧5.6萬換不起。
國內最好的寧德時代啊,獨角獸。
國際范圍,特斯拉的松下最好。三星,LG的也很贊,,,
不過在天朝,必須用國產電池才能獲得補貼。很好奇特斯拉國產會怎麼辦?是政策調整還是松下電池國產?拭目以待
松下的電池。
雅迪啊,艾瑪之類的都不錯。
超威!我的雅迪都騎了五年,充完電還能跑個三十來公里
㈦ 電動汽車上的逆變器是什麼
新能源汽車有別於傳統燃油車最核心的技術就是「三電」——電驅,電池,電控。其中逆變器這個器件在電動汽車領域已經變得舉足輕重,沒有它電動車根本跑不起來,並且逆變器的性能直接影響著電動車的價格,那麼這個小東西到底是干什麼用的,下面就了解一下。
先普及一下三電和DC、AC的基礎知識:
其中,電驅由三部分構成:傳動機構、電機、逆變器。
簡單介紹一下AC、DC:
交流電AC的特點:大小和方向都發生周期性變化。交流電在生活民用電壓220V、通用工業電壓380V,都屬於危險電壓。它的最基本的形式是正弦電流,我國交流電供電的標准頻率規定為50Hz。
直流電DC的特點:方向不隨時間發生改變。直流電一般被廣泛使用於手電筒(干電池)、手機(鋰電池)等各類生活小電器等。干電池(1.5V)、鋰電池、蓄電池等被稱之為直流電源,都低於24V。
我們想要真正了解逆變器的作用,就得先知道車載動力電池的原理。
新能源汽車能夠跑起來是因為電機帶動了車輪,而電機的電量來自於電池,但動力電池是以直流電存儲,電機使用的是交流電。交流電機必須依靠正弦波交流電才能驅動旋轉。但車載動力電池能夠輸出的是直流電,逆變器的作用就是把直流電轉換成正弦波交流電,並且它還控制著交流電機的轉速和扭矩。所以,要想把DC轉變AC運轉,就要靠逆變器。
所以,對於配備交流感應電機的電動車,必須通過逆變器,把電池包輸出的高壓直流電轉換成可控制幅值和頻率的正弦波交流電,才能驅動車輛行駛。
正弦波的獲得是通過方波演變而來的。首先了解一下方波的形成。請看電路圖,這個神奇的電路叫做Full Bridge Inverter,全橋逆變電路。它的結構很簡單,由四個開關(S1-S4)組成。A和B為電路輸出端的正負極。
通過開關控制,電流的流向發生了逆轉,通過不斷閉合開關,方型交流電就產生了。我們日常的家用220V電源頻率為50Hz這就意味著每分鍾需要開關100次。如此高的頻率沒有人能控製得了,所以需要接入場效應管,例如IGBT或MOSFET,這個電子元件可以實現每分鍾上千次的開關。
通過場效應管的開關控制,可以獲得我們所需要的方波,但我們要的是正弦波。這里就涉及到了一個技術名詞——脈寬調制。
當前,我們已經按照固定的頻率開閉開關形成了方波,如果將開關的頻率在需要更大的地方產生更大的脈沖…如下圖。
試想一下,如果我們對單位時間的脈沖求得平均值,它就會變成?
這是一條很接近與正弦曲線的圖形,脈沖越精確,切換的頻率越高,所得的曲線就越光滑。我們可以通過比較器進行對脈沖串的調制就能獲得平滑的正弦波曲線。
還有一種方法叫做重電壓逆變技術——在電路當中增加電容和電感的方式用於平滑曲線。電容用於平滑電壓曲線,電感用於平滑電流曲線。就好比在電路上增加了一個小容量的水庫(二級緩存),電容就相當於一個可以瞬間充放電的電池,它能吸收電壓脈沖,讓輸出曲線變得平滑。以上所說的只有一組電壓就能實現正弦波的輸出,如果用多組電壓進行調制,就能獲得精度更高的正弦波曲線,並且控制精度也更加精準。這種方法多用於風力發電機或電動汽車。
簡單來說,逆變器(Power Inverter)是一種能夠將 DC12V直流電轉換為和市電相同的 AC220V交流電,供一般電器使用,是一種方便的車用電源轉換器。若一台電動汽車的逆變器能支持較高電壓,則相應的電壓充電流較大,功率較大,這意味著同樣電流進行充電,充電功率可以等比例放大,即充電時間會縮短。
若提高逆變器的支持電壓,則相應的充電時逆變器產生的熱量會變多,那麼就需要解決逆變器中IGBT模塊的散熱問題,這是提高充電效率的關鍵問題,目前日本豐田對此研究較深入,例如其加硅碳技術的應用。
此外,逆變器性能的好壞直接決定電機的性能表現,也是各大新能源汽車企業的核心技術。所以逆變器技術的掌握和突破就如同燃油車時代的變速箱技術一樣,將會成為新能源汽車產品的核心技術。隨著新一代半導體功率器件的發展,可以看出,IGBT和SiC是未來電機控制系統和充電樁的主力干將。
IGBT在電力驅動系統中屬於逆變器模塊,將動力電池的直流電逆變成交流電提供給驅動電動機。它約佔新能源汽車電機驅動系統及車載充電系統成本的40%,其性能直接決定了整車的能源利用率。
SiC功率器件的損耗是Si器件的50%左右,主要用於實現電動車逆變器等驅動系統的小量輕化。
一提到純電動汽車,大多數人第一反應都是特斯拉,尤其是最近特斯拉的頻繁動作,讓其知名度變得更高,那麼特斯拉到底好在哪,為什麼就是比國產純電動汽車受歡迎?下面的視頻介紹了特斯拉的充電原理,一起學習一下。
10:23
㈧ 電動汽車整車控制器,認識電動汽車電機控制器
導讀:電動汽車整車控制器,認識電動汽車電機控制器
電機控制器,作為電動汽車的核心部件之一,是汽車動力性能的決定性因素。整車控制器(VCU),電動汽車的大腦,相當於電腦的Windows,手機的Andrio。作為電動汽車上全部電氣的運行平台,它的性能優劣,直接影響其他電氣性能的發揮那麼今天給大家詳細的介紹一下電動汽車整車控制器,認識電動汽車電機控制器。
1電機控制器在電動汽車中的位置和作用
1.1 位置
從外部看,一般的電機控制器最少具備兩對高壓介面。一對輸入介面,用於連接動力電池包高壓介面;另外一對是高壓輸出介面,連接電機,提供控制電源。
至少具備一隻低壓接頭,所有通訊、感測器、低壓電源等等都要通過這個低壓接頭引出,連接到整車控制器和動力電池管理系統。
1.2 工作過程
1.2.1 指令和響應
電機控制器,調速指令的觸發信號,來自整車控制器的命令。整車控制器一方面體現駕駛員意圖,另一方面從安全和車輛電氣系統運行狀態出發,評估對駕駛員的響應是否合理,最後執行或打折執行。駕駛員的意圖通過加速踏板和制動踏板表達並傳遞給整車控制器。
整車控制器給到電機控制器的具體指令,與動力系統相關的有以下幾種,加速,減速,制動,停車。電機控制器做出的響應為,改變電源電流、電壓、頻率等參數,使得電機的運行狀態符合整車控制器的需要。
1.2.2 閉環
電機控制器自身是一套閉環控制系統,調節目標參數,檢測受控函數值是否到達預期,若不相符,反饋給控制器,再次調整目標參數。經過反復的閉環反饋,實現高精確度的控制。
整車控制器採集車速感測器,各個電氣部件溫度、電壓等重要狀態參數,判斷整車的綜合情況,是否符合駕駛員提出的需求,同時不妨礙整個系統的健康狀況。這個過程,是整車層面的閉環控制。
1.2.3 改善的方向
一方面,好的控制策略,會對控制精度和響應速度產生重要影響,因而是研發人員投入精力的重要領域。
另一方面,隨著各個部件控制運算能力的提升,電動汽車的駕乘感受將越來越“隨心所欲”。
2 電機控制器基本組成
電機控制器系統構成,中央控制模塊,功率模塊,驅動控制模塊,各種感測器。
2.1 中央控制模塊
包括,PWM波生成電路,復位電路,感測器信號處理電路,交互電路。中央控制模塊,對外,通過對外介面,得到整車上其他部件的指令和狀態信息。對內,把翻譯過的指令傳遞給逆變器驅動電路,並檢測控制效果。
2.2功率模塊
電機控制器的主題是一部逆變器,對電機電流電壓進行控制。經常選用的功率器件主要有MOSFET, GTO, IGBT等。
上述文章的內容就是關於電動汽車整車控制器,認識電動汽車電機控制器電動車控制器是用來控制電動車電機的啟動、運行、進退、速度、停止以及電動車的其它電子器件的核心控制器件。希望我的介紹對大家有所幫助。
@2019㈨ 新能源汽車電驅動技術發展和產業化趨勢
新能源 汽車 的動力系統包括電驅動系統與電源系統兩大類
電驅動系統包含電機、電控制器、減速箱,是驅動電動 汽車 行駛的核心部件;電源系統包含車載充電機(OBC)、DC-DC 轉換器和高壓配電盒,是動力電池組進行充電、電能轉換及分配的核心部件。
電驅動產業鏈涉及環節較多,可以概括為零件—總成—系統—整車廠四大層級。
上游零部件包括永磁體、硅鋼體、功率模塊、電容、感測器等,這一級的玩家對在整車產業鏈中屬於「三級供應商」。在零部件基礎上進一步設計組裝得到電機總成、電控總成與傳動總成,這一級的玩家可以稱為車企的「二級供應商」;各個單獨總成進一步集成為電驅動系統供貨於車企,這一級玩家為行業「一級供應商」。
1.1. 大三電:電機、電控、減速器
1.1.1. 電機:扁線電機、高壓電機帶來新機遇
電驅動系統在新能源 汽車 成本中佔比僅次於電池。電驅動系統(電機、電控、減速器)是新能源 汽車 動力總成的關鍵部件,相當於傳統燃油車發動機的作用,直接決定整車的動力性能。其成本佔比僅次電池,佔比絕對值因新能源 汽車 品牌、車型而異。
驅動電機主要技術路徑聚焦在永磁同步電機&交流非同步電機上。永磁同步電機與交流非同步電機的主要區別點在於轉子結構,永磁同步電機會在轉子上放置永磁體,由磁體產生磁場;而交流非同步電機則是由定子繞組通電產生旋轉磁場。功率密度、效率(高效率區間)是衡量電機性能的關鍵指標:
1)功率密度越大代表著相同功率下的電機體積更小,有利於節省空間&製造成本;
2)效率越高,說明電機端損耗越小,相同電池容量下,新能源車續航里程更長。
永磁同步電機為目前應用最多的電機類型,非同步電機在高端車型雙電機配置下會有部分使用。相比交流非同步電機,永磁同步電機功率密度更高、高效區間更寬、質量更輕。
根據第一電動 汽車 網統計信息,2022 年 3 月,我國新能源 汽車 共配套驅動電機 50.97 萬台,其中永磁同步電機為 48.60 萬台,佔比 95%,適用於大部分主流車型;交流非同步電機配套 2.09 萬台,佔比為 4%,主要配套包括特斯拉 Model Y、嵐圖 FREE、蔚來 ES8、奧迪 e-tron、大眾 ID.4 CROZZ 等車型。交流非同步電機在高速中應用性能更優,同時具有成本優勢(稀土永磁材料成本較高,同功率的永磁同步電機價格更高),目前配套多以高端車型、雙電機方案為主 (蔚來 ES8 是前永磁同步+後交流非同步,特斯拉 Model Y 2021款採用前感應非同步+後永磁同步)。
多電機在高端車型中應用有所增加,故單車配套電機數也隨高端市場佔比而變化。
相比單電機,雙電機可以顯著提高 汽車 的加速性能與續航能力。同時,雙電機多意味著四驅系統,可以提供更好的附著力,從而提高安全性能。近年來,在高端車型中雙電機的應用不斷增加,特斯拉、蔚來、奧迪、大眾、賓士都陸續推出搭載雙電機的車型。而在法拉第 FF91 和榮威 MarvelX 中更是使用了三個電機。
扁線:可有效提高電機功率密度,減少銅損耗以提升效率。
1)功率密度高:相較於傳統的圓線繞組電機,扁線電機將圓形導線換成矩形導線,因此相同面積的定子線槽可以塞進更多面積的導線,進而提高功率密度。
2)效率高、損耗小:銅損耗在電機損耗里佔比達 65%,因此為提高電機效率,需採用更合理的定子繞組,從而降低銅耗。此外,扁線截面更粗使得電阻相對更小,銅導線發熱損失的能量也越小。而且扁線電機的端部尺寸短 5-10mm,從而降低端部繞組銅損耗。
3)重量、NVH 等方面也存在優勢。
發卡電機為應用最廣泛的扁線技術,產線投資高,產業化仍處於前期階段。根據線圈繞組方式差異,扁線電機可分為集中繞組扁線電機、波繞組扁線電機與 Hairpin(發卡)扁線電機,其中發卡電機應用最為廣泛。相對圓線電機,扁線電機無法進行手工製造、自動化要求較高——繞組製造過程非常復雜,需要先將導線,製作成發卡的形狀,然後通過自動化插入到定子鐵芯槽內,然後進行端部扭頭和焊接。高自動化及定製化使得扁線電機產線投入較高,根據方正電機,2021 年來公司已先後投資 17.42 億元用於產線建設,對企業資金實力有較大挑戰。
雪佛蘭和豐田開啟扁線電機應用先河,近年來滲透率不斷提升。2007 年,雪佛蘭VLOT 採用的電動 汽車 中就有發卡式扁線電機,其供應商為雷米。2015 年,豐田發行了裝載扁線電機的第四代普銳斯,其電機供應商為 Denso。在扁線電機更高的效率加成下及內外資電機廠商批量化工藝的成熟,近年來其應用不斷增加,2020 年來,保時捷、比亞迪、特斯拉等車企紛紛推出裝載發卡式電機的新車型,滲透率不斷增長。根據方正電機公司年報,2020 年全球新能源 汽車 行業扁線電機滲透率為 15%,我國扁線電機滲透率約為 10%。2021 年隨著各主流車企大規模換裝扁線電機,特斯拉換裝國產扁線電機,我國扁線電機滲透率已與全球扁線電機滲透率同步增長至 25%。
此外,在高端車型中,搭載扁線電機數量也開始從原來的單電機增加到雙電機。例如,保時捷首款純電動跑車 Taycan 便採用了三電機。
高壓:縮短充電時間、提高電機效率以延長里程的重要措施。純電乘用車電壓通常在 200-400V 之間,在同等功率下,當電壓從 400V 提升到 800V 後,線路中通過的電流減少一半,產生的功率損耗更小,從而可以提高充電效率、縮短充電時長,進而改善新能源 汽車 使用體驗。同時,工作電流的減少將降低功率損耗,繼而可以進一步降低同樣行駛里程中的電量消耗,從而延長 汽車 里程數。2021 年為我國 800V 高壓快充元年,行業發展有望加速。
2021 年來,比亞迪(e 平台)、理想、小鵬、廣汽(埃安)、吉利(極氪 001)、北汽(極狐)等車企紛紛布局 800V 快充技術,我國 800V 高壓快充行業進入發展加速期。
高壓化下對 汽車 電子各環節都將帶來新挑戰,目前應用僅停留在高端車型。新能源 汽車 要實現 800V 及以上高壓平台兼容,除了需要提高電機、電池性能外,PTC、空調、OBC、高壓線束等部件都需要重新適配,此外還面臨更高電壓帶來的安全、熱管理、成本等多方面挑戰。受以上因素影響,目前 800V 高壓平台應用還僅停留在部分高端車型。
油冷:採取合理的電機熱管理設計可以進一步提升功率密度。電機的功率極限能力往往受限於電機溫升極限,因此提高電機冷卻散熱能力可以快速提高功率密度,同時防止永磁體在高溫時發生不可逆的「退磁」。目前常用的冷卻方式為水冷,但其無法直接冷卻熱源,熱量傳遞路徑長、散熱效率低;相較於水冷,油冷的優勢在於油品具有不導電、不導磁、絕緣等性能,因此可以直接接觸熱源,形成更安全的熱交換,提高散熱效率。
故相同的繞組絕緣等級下,油冷電機可以承受更高的繞組電流,長期工作功率更高。
1.1.2. 電機控制器:IGBT 掣肘,單管並聯紓困
電控系統通過電機控制演算法發出信號驅動電機轉動,進而控制整個車輛的動力輸出。電控系統可分為主控制器和輔助控制器:
1)主控制器控制 汽車 的驅動電機;
2)輔助控制器控制 汽車 的轉向電機、制動器、空調等。
我們本文重點討論的電控系統主要指主控制器,主要由控制板(接受整車控制器的信號指令,運行電機控制演算法,發出控制指令給功率板)、功率板(接受控制板指令,頻繁通斷 IGBT/MOSFET,控制電機轉動)、殼體等組成,在控制器中,控制電路板、功率電路板成本主要在於 IGBT(絕緣柵雙極型晶體管)、MOSFET(功率場效應晶體管)、MCU(微控制器)、電源晶元等半導體器件。
電控開發需要從硬體、軟體兩方面協同進步。類似電機,電機控制器的核心指標同樣為功率密度、效率,軟硬體的優化也是圍繞這兩大核心主題展開。
1)硬體角度,功率半導體單管並聯方案將具備高性價比優勢,或成 A 級以下車型主流硬體配置;而模組方案憑借更高可靠性,在中高端車型占據核心地位。器件方面,碳化硅有望逐步滲透。
2)軟體角度,需要在可拓展性、易維護性、功能安全性等方面的不斷提高。
功率半導體 IGBT 占電控成本比重較高,主要參與者為國外功率半導體巨頭。根據蓋世 汽車 數據,2017 年功率板的核心器件 IGBT 模塊,佔到電控總成本高達 37%。根據Yole,2020 年全球 IGBT 行業銷售額 TOP15 公司中共 14 家為國外企業,而英飛凌(Infineon)更是憑借 14.33 億美元的收入連續多年穩居全球第一。
功率半導體在新能源 汽車 中的應用可分為模組&單管並聯這兩種路線,兩者有各自適用的場景。模組為高度集成的功率半導體產品,保證了電控成品的可靠性&良率高,同時降低了系統設計的復雜度。以 IGBT 為例,由於車規級功率半導體主要被英飛凌等外資占據,其往往提供特定參數規格的標准 IGBT 模組,然而模組參數往往不能很好適配具體需求,因此標准模組在不同功率的驅動電機控制系統中容易出現容量受限、結構安裝等問題。若採用多個 IGBT 單管並聯(通過復合母排、冷卻裝置等部件一同封裝),則可以根據不同車型靈活設計冗餘量,並且單管成本顯著低於模塊,在成本要求較高的A 級以下車型使用得更為普遍。但多個 IGBT 單管並聯時,由於各單管參數的分散性、輸出電流的不一致性,可能使系統可靠性較差,整個 IGBT 模組壽命也會縮短,對企業技術、製造能力考驗大,故中高端 B 級以上車型通常使用可靠性更強的模組路線。
碳化硅功率器件可顯著提高電控效率、功率密度等性能。碳化硅材料具有禁帶寬度大、熱導率高、電子飽和遷移速率高等性質,相比硅基 IGBT,碳化硅元器件體積更小、頻率更高、開關損耗更小,可以使電驅動系統在高壓、高溫下保持高速穩定運行(硅基IGBT 只能在 200 以下的環境中工作)。根據意法半導體,在 400V 電壓平台下,相較於硅基 IGBT,碳化硅功率件有 2-4%的效率提升;在 750V 電壓平台下,碳化硅器件有3.5-8%的效率提升。
越來越多的高端車型已採用碳化硅電控。
1)車企角度,2021 年奧迪 e-tron GT 與福特 Mach E、特斯拉 Model S 等新車型也紛紛採用了碳化硅器件。2021 年 10 月,通用 汽車 與 Wolfspeed 簽訂了碳化硅供應協議,在原材料上搶先布局。國內車企也不斷布局碳化硅,比亞迪發布了碳化硅車系平台 e-Platform 3.0,小鵬 G9、蔚來 ET7 等採用碳化硅電控的車型也有望在 2022 年交付。
2)供應商角度,根據精進電動招股說明書,公司採用全 SiC 模塊,可以使控制器的功率提高 20kW 同時使其重量減少 6kg,逆變器尺寸縮小 43%。根據英搏爾,碳化硅電機控制器的損耗下降了 5%,電驅動系統整體 NEDC 平均效率提升 3.6%,整車 NEDC 續航提升 30km、增幅達 5.8%。
除了電機控制器外,碳化硅器件在 OBC、DC/DC、無線充電等「小三電」中也有應用。例如,欣銳 科技 早於 2013 年正式將 Wolfspeed 的碳化硅方案應用於 OBC 產品,2021 年為比亞迪 DMi 車型提供碳化硅電源類產品。目前制約碳化硅器件應用的主要因素為成本,伴隨著未來碳化硅產業鏈的發展完善,相關器件應用滲透率將穩步提升。
軟體:電控的進步體現在可拓展性、易維護性、功能安全性等方面的不斷提高。
1)可拓展性:電控軟體開發通常會使用 AUTOSAR 工具鏈(B 級及以上車把 AUTOSAR 作為「標配」)。AUTOSAR(AUTOmotive Open System Architecture, 汽車 開放系統架構)是由全球各大 汽車 整車廠、汽零供應商、 汽車 電子軟體系統公司聯合建立的一套標准協議,旨在有效地管理日趨復雜的 汽車 電子軟體系統。AUTOSAR 規范的運用使得不同結構的電子控制單元的介面特徵標准化、模塊化,應用軟體具備更好的可擴展性、可移植性,縮短開發周期。
2)易維護性:是指在軟體後續使用過程中,及時實現遠程更新升級與性能優化。OTA(Over-the-Air)技術可以降低維護成本,創造新的收入來源,目前已經在 汽車 行業包括其控制器總成上持續推廣。3)安全性,電驅動系統的控制器總成對新能源 汽車 的動力輸出進行直接的調節控制,是保證安全性的重要一環。在 汽車 行業逐步引入 ISO26262 標准之後,基於功能安全的車用軟體開發對電控軟體提出了新的要求。
1.1.3. 減速器:單檔路線為主,兩檔減速可以期待
電機高速化趨勢明顯,帶動減速器向兩檔減速方向發展。減速器是影響電驅動系統整體 NVH 性能的關鍵。按照傳動等級分類,減速器可以分為單級減速器、兩檔減速器以及兩檔以上減速器。在電機高速化的趨勢下,減速器正在經歷從單級到多檔的產品演變過程。目前,豐田普銳斯和特斯拉 Model 3 電機轉速均已達到了 17900rpm,國內車企轉速略低,但基本也都達到了 16000rpm,下一步規劃便是 18000-20000rpm,電機高速化性能的提升需要相應的高性能減速器來配套。
單級減速器結構簡單、成本較低、體積小,因此目前仍為主流應用。但在高轉速區間,單檔減速器由於傳動比單一,在最高或最低車速以及低負荷條件下,電驅動效率會下降,浪費電能而減少行駛里程,此外減速器高轉速時會帶來 NVH 等問題。
兩檔減速器在混動車中率先應用,純電動車應用可以期待。相較於單檔減速器,兩檔減速器一方面使驅動電機在更高效的區域運行,從而提升驅動系統效率。另一方面,採用兩檔減速器後,傳動比可以做到更高, 汽車 動力性隨之增加、減少百公里加速時間。
此外,採用兩個檔位後,驅動電機可以更加小型化、低速化,從而降低電機及電控的成本。目前,采埃孚、GKN、麥格納、Taycan 等企業均已推出兩檔減速器產品。
1.2. 小三電:OBC、DC/DC、PDU
「小三電」是 OBC、DC/DC、PDU 三大類電源產品,三者一同搭建了 汽車 內部的「能源網路」。OBC(充電機)負責將來自電網的交流電轉換成直流電給電池充電; 汽車 電氣電子系統中,不同部件需要的電壓等級不盡相同,故需要 DC/DC(直流-直流變換器)轉換電壓;PDU(高壓配電盒)負責內部「電氣能源網架」的互聯互通。
半導體器件成本佔比較高,部分仍依賴進口。根據威邁斯招股說明書,在電源產品中,半導體器件、電容電阻為主要成本構成,佔比分別為 23%和 16%。而由於半導體器件與部分電容產品國產化水平較低,多數公司仍採用外資供應商為主。例如,威邁斯主要供應商為 TI、英飛凌、意法半導體、貴彌功等,2016-2018 年公司進口原材料金額佔比分別為 22.30%、19.96%、28.71%,其中 IGBT、MOSFET 海外主要供貨商英飛凌佔比最高,2016-2018 年采購金額佔比分別為 3.18%、6.61%、7.28%。
技術持續演進,集成化趨勢同樣顯著,軟硬體能力都將迎來考驗。早期車載電源產品主要採用模擬控制技術,產品功能較為單一,配套的軟體只具備檢測功能,不能實現精準控制。之後車載電源產品向數字化技術轉變,能夠實現復雜的控制演算法,實現輸出參數的靈活調整和精準控制,提高了軟體系統的操控性,包括車載電源的診斷、升級和參數調整等應用需求。下一代車載電源產品將向集成化轉變,在硬體、軟體、體積、重量四個維度實現創新突破。硬體上有望將進一步採用更高性能的碳化硅器件;軟體上將開發過程轉換為模型化編程及滿足 AUTOSAR 的介面方式,提升軟體穩定性和靈活性;在體積和重量上實現小型化、輕量化。
1.3. 集成化:1+1+1 3,深度集成方興未艾
1+1+1>3,電驅動由最初「結構集成」向「深度系統集成」演進,集成化「多合一」總成產品成為主流趨勢。以往動力系統的電機、電控、電源多單獨采購,根據其電氣、機械結構進行集成組裝;隨著新能源 汽車 零部件要求不斷提高,「多合一」總成產品通過巧妙設計將電機、電控、減速器、電源「深度集成」,減少彼此間的連接器、冷卻組件、高壓線束等部件。「多合一」集成式系統相比分體式產品的優勢主要體現在以下方面:
1)性能更優:降低了各部件之間連接部位的效率損耗,提高整車的 NVH 性能,從而提高了集成系統的可靠性;
2)成本更低:集成式電驅動系統可以減少車內部的高壓線束、連接器數量,節約線束與連接器成本,從而使集成式系統更具有經濟性。
3)更省空間:集成式產品體積更小、重量更輕,有利於節省車內空間。
集成化電驅動系統滲透率不斷提升。根據 NE 時代新能源,2020 年/2022 年 1-4 月我國新能源乘用車「三合一」電驅動系統搭載量為 50.27/79.26 萬台,滲透率為44.91%/61.63%,目前基本涵蓋大部分 A 級車、B 級以上車型。
現有集成產品以「三合一」為主,集成度更高的「多合一」新產品也在不斷問世。
根據 NE 時代新能源,2022 年 1-4 月新能源乘用車搭載的電驅動系統中,分體式、電機/電控「二合一」合計佔比為 44%,「三合一」佔比為 52%,「多合一」佔比為 4%。同時,OBC、DC-DC、PDU 等充配電系統集成產品應用也不斷增加,結合電驅系統集成產品將形成集成度更高的多合一平台。
華為 DriveOne「七合一」電驅動系統打造多合一集成新標桿,比亞迪和上汽變速器也陸續推出多合一產品。
1)華為七合一系統集成了 MCU、電機。減速器、DC-DC、 OBC、PDU、BCU 七大部件,具有開發簡單、適配簡單、布置簡單、演進簡單等優勢。
相較於「三合一」,該產品體積減少 20%、重量減輕 15%。此外,華為 DriveOne 系統可實現 7dB 的超靜音,並具有 80%NEDC 效率,提升整車駕駛體驗。根據 NE 時代新能源,華為「三合一」電驅動總成已在長安 CS-GXNEV 和賽力斯 SF5 兩款車型中得到應用,但目前其七合一產品還沒有在整車中的應用案例。
2)比亞迪「海豚」八合一系統即成立VCU、BCU、PDU、DC-DC、OBC、MCU、電機、減速器八大部件;
3)上汽變速器&威邁斯的七合一系統集成電機、電控、減速器、OBC、DC-DC、PDU、BCU 七大部件。
1.4. 總結:千億空間市場廣闊,技術變革推動天花板不斷打開
據前文所述,新能源 汽車 電驅動、電源系統圍繞「高效率區間、高功率密度」等核心性能,其技術迭代仍在演進,而且針對不同車企、不同車型大多需要「量身定製」。
截至 2022 年 4 月,國內電動車銷量結構成「紡錘形」——B 級和 A00 級車型銷量佔比較高。分車型來看電驅動技術,1)A/B 級及以上中高端車型通常因價格較高、可降本空間大,性能要求高,故對「三合一」乃至「六合一/七合一」等更青睞,扁線、碳化硅有 望率先在中高端車型進行滲透。2)A00/A0 級的低端車型對成本要求更高,故傾向於采 購分體式產品,部分也會採用成本低的「三合一」。即使對同一級別車型,不同車企及電動化平台均有各自技術架構,需要電驅動企業去配合設計,故當前定製化水平仍較高。
1)技術變革帶動需求結構變化:在電機技術方向上,扁線電機滲透率有望在未來5 年快速提升,我們假設 2025 年在電驅三合一市場的綜合滲透率將達到 87%;在單車配套電機數量上,雙電機目前仍主要應用於高端車型,我們假設 2025 年雙電機在電驅三合一市場綜合滲透率將達到 5%。在電控方向,由於碳化硅性能優勢較強,近年應用增長較快,考慮其降本速度,我們假設碳化硅電控滲透率穩步提升、2025 年在電驅三合一市場綜合滲透率達到 26%。
2)規模化帶動價格下降:電機方面,扁線電機廠家近年產能擴展迅猛,我們預計規模化將帶動價格快速下降,同時隨著扁線電機滲透率提升,與圓線電機價格差異持續縮小,經濟性更為突出;電控方面,碳化硅同樣持續降本。
3)集成化佔比提高:我們將電驅動&電源市場分為分布式、二合一、三合一(含少量「多合一」),我們假設「三合一」滲透率不斷提升、2025 年達到 59%(基本覆蓋 A 級及以上的車型)
行業參與者可分為「三大陣營」:整車廠自供體系、動力系統集成商、第三方電驅動供應商。
1)整車廠自供體系(in-house):出於供應鏈安全、成本控制等考慮,整車廠多設立子公司或合資公司自供電驅動、電源產品,代表公司有特斯拉、比亞迪旗下的弗迪動力、蔚來旗下的蔚然動力、長城旗下的蜂巢能源等。
2)動力系統集成商(Tier1):通常為海外 汽車 零部件巨頭,如聯合電子、日電產、博世、大陸、博格華納等,憑借深厚的技術、工藝等積淀拓展至新能源 汽車 領域,本身產品力強、產能規模大,且具備全球主流車企客戶資源。
3)第三方電驅動供應商:近年來快速崛起,獨立第三方根據業務側重點可以分為電控為主、電機為主的廠商,但是在集成化的趨勢下,企業通常會同時布局電機、電控、電源與「多合一」系統。根據公司業務結構差異,又可分為以下幾類:
1) 整車廠自製 VS 向第三方外采:
我們認為,未來 5-10 年仍將是自主品牌與新勢力車企崛起的機遇期。一方面由於新能源 汽車 更新換代速度要高於傳統燃油車,相比外資品牌,自主品牌的「包袱」更小,能夠更加快速地進行變革。另一方面,新能源 汽車 紮根本土,對消費者需求有更深刻的認知,可以敏銳捕捉到消費者需求變化並快速響應。
上述核心車企采購邏輯(自製 or 開放供應鏈)影響了第三方可觸及的市場空間。
對於前述的「中高端、中端、中低端」市場,車企通常有各自的采購偏好:
2021 年/2025 年第三方供應商總體銷量份額為 40%/60%。整車廠前期因新能車出貨量相對不大,部分車企選擇自製電驅動/電源系統,但後期隨新能源車年銷量過百萬輛、車型品類豐富等,對自製體系的成本控制能力、快速研發能力、產能等都提出較大挑戰。屆時,我們預計第三方憑借技術平台完備,以標准化促定製化開發,疊加定點車型銷量較大,規模效應強勁,在成本、開發速度、產能方面均具備更強競爭優勢。不同於燃油車,電池、電驅作為新能源 汽車 中最重要的板塊,如果全部外包給第三方供應商,那麼留給車企的參與環節將大幅減少,這將不斷降低產業壁壘,縮小盈利空間,因此從整車廠的經營戰略來考慮,部分車企未來仍會堅持「部分自供」。綜上,我們預計多數整車廠在性能要求苛刻的中高端平台(B 級及以上)部分採用自供體系、部分外供,中端、中低端市場的車型開放供應鏈給第三方。結合上一節不同品牌車的銷量佔比數據,我們測算 2021 年第三方供應商總體銷量份額約 39.96%,至 2025 年份額有望提升至 60.38%。
2) 第三方供應商競爭焦點(第三方 VS 第三方):
國內主流廠家在技術上和海外 Tier1 的差異在逐步縮小。海外 Tier1 在傳統車零部件研發生產上走在世界前列,但是近年來我國電驅動供應商在技術上不斷實現突破,與國外先進水平差距逐步縮小,核心性能基本與海外 Tier1 相差不大,在新技術路線的布局方面也處於同一起跑線甚至領先一步。
高壓化(基於碳化硅的電驅動產品):在電機方面,方正電機基於 800V 碳化硅平台的驅動電機目前已完成客戶項目定點,有望於 2022Q3 量產。在電控方面,日立為保時捷 Taycna 提供了基於 Si-IGBT 技術的 800V 的逆變器。在電驅動總成方面,匯川技術、臻驅 科技 、中車時代等都已推出了應用碳化硅的驅動集成產品,其中匯川的第四代動力總成已在小鵬 800V 高壓平台車型中實現量產。
扁線電機:方正電機、大洋電機、華域電動等生產的扁線電機均已得到應用,例如方正電機產品已量產配套蔚來 ET7,大洋電機已量產配套北汽 48V BSG。